whisperx-test / app.py
sdafd's picture
Update app.py
57e238b verified
raw
history blame
7.72 kB
import gradio as gr
import whisperx
import torch
import librosa
import logging
import os
import time
import numpy as np
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("whisperx_app")
# Device setup (force CPU)
device = "cpu"
compute_type = "int8"
torch.set_num_threads(os.cpu_count())
# Pre-load models
models = {
"tiny": whisperx.load_model("tiny", device, compute_type=compute_type, vad_method='silero'),
"base": whisperx.load_model("base", device, compute_type=compute_type, vad_method='silero'),
"small": whisperx.load_model("small", device, compute_type=compute_type, vad_method='siliro'),
"large": whisperx.load_model("large", device, compute_type=compute_type, vad_method='silero'),
"large-v2": whisperx.load_model("large-v2", device, compute_type=compute_type, vad_method='silero'),
"large-v3": whisperx.load_model("large-v3", device, compute_type=compute_type, vad_method='silero'),
}
def split_audio_by_pause(audio, sr, pause_threshold, top_db=30):
"""
Splits the audio into segments using librosa's non-silent detection.
Adjacent non-silent intervals are merged if the gap between them is less than the pause_threshold.
Returns a list of (start_sample, end_sample) tuples.
"""
# Get non-silent intervals based on an amplitude threshold (in dB)
intervals = librosa.effects.split(audio, top_db=top_db)
if intervals.size == 0:
return [(0, len(audio))]
merged_intervals = []
current_start, current_end = intervals[0]
for start, end in intervals[1:]:
# Compute the gap duration (in seconds) between the current interval and the next one
gap_duration = (start - current_end) / sr
if gap_duration < pause_threshold:
# Merge intervals if gap is less than the threshold
current_end = end
else:
merged_intervals.append((current_start, current_end))
current_start, current_end = start, end
merged_intervals.append((current_start, current_end))
return merged_intervals
def transcribe(audio_file, model_size="base", debug=False, pause_threshold=0.0):
start_time = time.time()
final_result = ""
debug_log = []
try:
# Load audio file at 16kHz
audio, sr = librosa.load(audio_file, sr=16000)
debug_log.append(f"Audio loaded: {len(audio)/sr:.2f} seconds long at {sr} Hz")
# Get the preloaded model and determine batch size
model = models[model_size]
batch_size = 8 if model_size == "tiny" else 4
# If pause_threshold > 0, split audio into segments based on silence pauses
if pause_threshold > 0:
segments = split_audio_by_pause(audio, sr, pause_threshold)
debug_log.append(f"Audio split into {len(segments)} segment(s) using a pause threshold of {pause_threshold}s")
# Process each audio segment individually
for seg_idx, (seg_start, seg_end) in enumerate(segments):
audio_segment = audio[seg_start:seg_end]
seg_duration = (seg_end - seg_start) / sr
debug_log.append(f"Segment {seg_idx+1}: start={seg_start/sr:.2f}s, duration={seg_duration:.2f}s")
# Transcribe this segment
transcript = model.transcribe(audio_segment, batch_size=batch_size)
# Load alignment model for the detected language in this segment
model_a, metadata = whisperx.load_align_model(
language_code=transcript["language"], device=device
)
transcript_aligned = whisperx.align(
transcript["segments"], model_a, metadata, audio_segment, device
)
# Format word-level output with adjusted timestamps (adding segment offset)
for segment in transcript_aligned["segments"]:
for word in segment["words"]:
# Adjust start and end times by the segment's start time (in seconds)
adjusted_start = word['start'] + seg_start/sr
adjusted_end = word['end'] + seg_start/sr
final_result += f"[{adjusted_start:5.2f}s-{adjusted_end:5.2f}s] {word['word']}\n"
else:
# Process the entire audio without splitting
transcript = model.transcribe(audio, batch_size=batch_size)
model_a, metadata = whisperx.load_align_model(
language_code=transcript["language"], device=device
)
transcript_aligned = whisperx.align(
transcript["segments"], model_a, metadata, audio, device
)
for segment in transcript_aligned["segments"]:
for word in segment["words"]:
final_result += f"[{word['start']:5.2f}s-{word['end']:5.2f}s] {word['word']}\n"
debug_log.append(f"Language detected: {transcript['language']}")
debug_log.append(f"Batch size: {batch_size}")
debug_log.append(f"Processed in {time.time()-start_time:.2f}s")
except Exception as e:
logger.error("Error during transcription:", exc_info=True)
final_result = "Error occurred during transcription"
debug_log.append(f"ERROR: {str(e)}")
if debug:
return final_result, "\n".join(debug_log)
return final_result
# Gradio Interface
with gr.Blocks(title="WhisperX CPU Transcription") as demo:
gr.Markdown("# WhisperX CPU Transcription with Word-Level Timestamps")
with gr.Row():
with gr.Column():
audio_input = gr.Audio(
label="Upload Audio File",
type="filepath",
sources=["upload", "microphone"],
interactive=True,
)
model_selector = gr.Dropdown(
choices=list(models.keys()),
value="base",
label="Model Size",
interactive=True,
)
# New input: pause threshold in seconds (set to 0 to disable splitting)
pause_threshold_slider = gr.Slider(
minimum=0, maximum=5, step=0.1, value=0,
label="Pause Threshold (seconds)",
interactive=True,
info="Set a pause duration threshold. Audio pauses longer than this will be used to split the audio into segments."
)
debug_checkbox = gr.Checkbox(label="Enable Debug Mode", value=False)
transcribe_btn = gr.Button("Transcribe", variant="primary")
with gr.Column():
output_text = gr.Textbox(
label="Transcription Output",
lines=20,
placeholder="Transcription will appear here...",
)
debug_output = gr.Textbox(
label="Debug Information",
lines=10,
placeholder="Debug logs will appear here...",
visible=False,
)
# Toggle debug visibility
def toggle_debug(debug_enabled):
return gr.update(visible=debug_enabled)
debug_checkbox.change(
toggle_debug,
inputs=[debug_checkbox],
outputs=[debug_output]
)
# Process transcription with the new pause_threshold parameter
transcribe_btn.click(
transcribe,
inputs=[audio_input, model_selector, debug_checkbox, pause_threshold_slider],
outputs=[output_text, debug_output]
)
# Launch configuration
if __name__ == "__main__":
demo.queue(max_size=4).launch()