Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,17 +6,158 @@ import logging
|
|
6 |
import os
|
7 |
import time
|
8 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
logging.basicConfig(level=logging.INFO)
|
12 |
logger = logging.getLogger("whisperx_app")
|
13 |
|
14 |
-
# Device setup (force CPU)
|
15 |
device = "cpu"
|
16 |
compute_type = "int8"
|
17 |
torch.set_num_threads(os.cpu_count())
|
18 |
|
19 |
-
# Pre-load models
|
20 |
models = {
|
21 |
"tiny": whisperx.load_model("tiny", device, compute_type=compute_type, vad_method='silero'),
|
22 |
"base": whisperx.load_model("base", device, compute_type=compute_type, vad_method='silero'),
|
@@ -32,7 +173,6 @@ def split_audio_by_pause(audio, sr, pause_threshold, top_db=30):
|
|
32 |
Adjacent non-silent intervals are merged if the gap between them is less than the pause_threshold.
|
33 |
Returns a list of (start_sample, end_sample) tuples.
|
34 |
"""
|
35 |
-
# Get non-silent intervals based on an amplitude threshold (in dB)
|
36 |
intervals = librosa.effects.split(audio, top_db=top_db)
|
37 |
if intervals.size == 0:
|
38 |
return [(0, len(audio))]
|
@@ -41,10 +181,8 @@ def split_audio_by_pause(audio, sr, pause_threshold, top_db=30):
|
|
41 |
current_start, current_end = intervals[0]
|
42 |
|
43 |
for start, end in intervals[1:]:
|
44 |
-
# Compute the gap duration (in seconds) between the current interval and the next one
|
45 |
gap_duration = (start - current_end) / sr
|
46 |
if gap_duration < pause_threshold:
|
47 |
-
# Merge intervals if gap is less than the threshold
|
48 |
current_end = end
|
49 |
else:
|
50 |
merged_intervals.append((current_start, current_end))
|
@@ -52,62 +190,85 @@ def split_audio_by_pause(audio, sr, pause_threshold, top_db=30):
|
|
52 |
merged_intervals.append((current_start, current_end))
|
53 |
return merged_intervals
|
54 |
|
55 |
-
|
|
|
|
|
|
|
56 |
start_time = time.time()
|
57 |
final_result = ""
|
58 |
debug_log = []
|
59 |
|
60 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
# Load audio file at 16kHz
|
62 |
audio, sr = librosa.load(audio_file, sr=16000)
|
63 |
debug_log.append(f"Audio loaded: {len(audio)/sr:.2f} seconds long at {sr} Hz")
|
64 |
|
65 |
-
#
|
|
|
|
|
|
|
|
|
|
|
66 |
model = models[model_size]
|
67 |
batch_size = 8 if model_size == "tiny" else 4
|
68 |
|
69 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
if pause_threshold > 0:
|
71 |
segments = split_audio_by_pause(audio, sr, pause_threshold)
|
72 |
debug_log.append(f"Audio split into {len(segments)} segment(s) using a pause threshold of {pause_threshold}s")
|
73 |
-
# Process each audio segment individually
|
74 |
for seg_idx, (seg_start, seg_end) in enumerate(segments):
|
75 |
audio_segment = audio[seg_start:seg_end]
|
76 |
seg_duration = (seg_end - seg_start) / sr
|
77 |
debug_log.append(f"Segment {seg_idx+1}: start={seg_start/sr:.2f}s, duration={seg_duration:.2f}s")
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
# Load alignment model for the detected language in this segment
|
83 |
-
model_a, metadata = whisperx.load_align_model(
|
84 |
-
language_code=transcript["language"], device=device
|
85 |
-
)
|
86 |
-
transcript_aligned = whisperx.align(
|
87 |
-
transcript["segments"], model_a, metadata, audio_segment, device
|
88 |
)
|
89 |
-
|
90 |
-
# Format word-level output with adjusted timestamps (adding segment offset)
|
91 |
-
for segment in transcript_aligned["segments"]:
|
92 |
for word in segment["words"]:
|
93 |
-
# Adjust start and end times by the segment's start time (in seconds)
|
94 |
adjusted_start = word['start'] + seg_start/sr
|
95 |
adjusted_end = word['end'] + seg_start/sr
|
96 |
final_result += f"[{adjusted_start:5.2f}s-{adjusted_end:5.2f}s] {word['word']}\n"
|
97 |
else:
|
98 |
# Process the entire audio without splitting
|
99 |
-
transcript = model.transcribe(audio, batch_size=batch_size)
|
100 |
-
|
101 |
-
language_code=transcript["language"], device=device
|
102 |
-
)
|
103 |
-
transcript_aligned = whisperx.align(
|
104 |
transcript["segments"], model_a, metadata, audio, device
|
105 |
)
|
106 |
-
for segment in
|
107 |
for word in segment["words"]:
|
108 |
final_result += f"[{word['start']:5.2f}s-{word['end']:5.2f}s] {word['word']}\n"
|
109 |
|
110 |
-
debug_log.append(f"Language
|
111 |
debug_log.append(f"Batch size: {batch_size}")
|
112 |
debug_log.append(f"Processed in {time.time()-start_time:.2f}s")
|
113 |
|
@@ -120,9 +281,11 @@ def transcribe(audio_file, model_size="base", debug=False, pause_threshold=0.0):
|
|
120 |
return final_result, "\n".join(debug_log)
|
121 |
return final_result
|
122 |
|
|
|
123 |
# Gradio Interface
|
|
|
124 |
with gr.Blocks(title="WhisperX CPU Transcription") as demo:
|
125 |
-
gr.Markdown("# WhisperX CPU Transcription with
|
126 |
|
127 |
with gr.Row():
|
128 |
with gr.Column():
|
@@ -138,13 +301,23 @@ with gr.Blocks(title="WhisperX CPU Transcription") as demo:
|
|
138 |
label="Model Size",
|
139 |
interactive=True,
|
140 |
)
|
141 |
-
# New input: pause threshold in seconds (set to 0 to disable splitting)
|
142 |
pause_threshold_slider = gr.Slider(
|
143 |
minimum=0, maximum=5, step=0.1, value=0,
|
144 |
label="Pause Threshold (seconds)",
|
145 |
interactive=True,
|
146 |
info="Set a pause duration threshold. Audio pauses longer than this will be used to split the audio into segments."
|
147 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
debug_checkbox = gr.Checkbox(label="Enable Debug Mode", value=False)
|
149 |
transcribe_btn = gr.Button("Transcribe", variant="primary")
|
150 |
|
@@ -152,7 +325,7 @@ with gr.Blocks(title="WhisperX CPU Transcription") as demo:
|
|
152 |
output_text = gr.Textbox(
|
153 |
label="Transcription Output",
|
154 |
lines=20,
|
155 |
-
placeholder="Transcription will appear here..."
|
156 |
)
|
157 |
debug_output = gr.Textbox(
|
158 |
label="Debug Information",
|
@@ -171,13 +344,15 @@ with gr.Blocks(title="WhisperX CPU Transcription") as demo:
|
|
171 |
outputs=[debug_output]
|
172 |
)
|
173 |
|
174 |
-
# Process transcription with
|
175 |
transcribe_btn.click(
|
176 |
transcribe,
|
177 |
-
inputs=[audio_input, model_selector, debug_checkbox, pause_threshold_slider],
|
178 |
outputs=[output_text, debug_output]
|
179 |
)
|
180 |
|
181 |
-
#
|
|
|
|
|
182 |
if __name__ == "__main__":
|
183 |
demo.queue(max_size=4).launch()
|
|
|
6 |
import os
|
7 |
import time
|
8 |
import numpy as np
|
9 |
+
import requests
|
10 |
+
import random
|
11 |
+
import string
|
12 |
+
import json
|
13 |
+
import pathlib
|
14 |
+
import tempfile
|
15 |
|
16 |
+
# -------------------------------
|
17 |
+
# Vocal Extraction Function
|
18 |
+
# -------------------------------
|
19 |
+
def get_vocals(input_file):
|
20 |
+
try:
|
21 |
+
session_hash = ''.join(random.choice(string.ascii_lowercase + string.digits) for _ in range(11))
|
22 |
+
file_id = ''.join(random.choice(string.ascii_lowercase + string.digits) for _ in range(11))
|
23 |
+
file_len = 0
|
24 |
+
|
25 |
+
file_content = pathlib.Path(input_file).read_bytes()
|
26 |
+
file_len = len(file_content)
|
27 |
+
r = requests.post(
|
28 |
+
f'https://politrees-audio-separator-uvr.hf.space/gradio_api/upload?upload_id={file_id}',
|
29 |
+
files={'files': open(input_file, 'rb')}
|
30 |
+
)
|
31 |
+
json_data = r.json()
|
32 |
+
|
33 |
+
headers = {
|
34 |
+
'accept': '*/*',
|
35 |
+
'accept-language': 'en-US,en;q=0.5',
|
36 |
+
'content-type': 'application/json',
|
37 |
+
'origin': 'https://politrees-audio-separator-uvr.hf.space',
|
38 |
+
'priority': 'u=1, i',
|
39 |
+
'referer': 'https://politrees-audio-separator-uvr.hf.space/?__theme=system',
|
40 |
+
'sec-ch-ua': '"Not(A:Brand";v="99", "Brave";v="133", "Chromium";v="133"',
|
41 |
+
'sec-ch-ua-mobile': '?0',
|
42 |
+
'sec-ch-ua-platform': '"Windows"',
|
43 |
+
'sec-fetch-dest': 'empty',
|
44 |
+
'sec-fetch-mode': 'cors',
|
45 |
+
'sec-fetch-site': 'same-origin',
|
46 |
+
'sec-fetch-storage-access': 'none',
|
47 |
+
'sec-gpc': '1',
|
48 |
+
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/133.0.0.0 Safari/537.36',
|
49 |
+
}
|
50 |
+
|
51 |
+
params = {
|
52 |
+
'__theme': 'system',
|
53 |
+
}
|
54 |
+
|
55 |
+
json_payload = {
|
56 |
+
'data': [
|
57 |
+
{
|
58 |
+
'path': json_data[0],
|
59 |
+
'url': 'https://politrees-audio-separator-uvr.hf.space/gradio_api/file='+json_data[0],
|
60 |
+
'orig_name': pathlib.Path(input_file).name,
|
61 |
+
'size': file_len,
|
62 |
+
'mime_type': 'audio/wav',
|
63 |
+
'meta': {
|
64 |
+
'_type': 'gradio.FileData',
|
65 |
+
},
|
66 |
+
},
|
67 |
+
'MelBand Roformer | Vocals by Kimberley Jensen',
|
68 |
+
256,
|
69 |
+
False,
|
70 |
+
5,
|
71 |
+
0,
|
72 |
+
'/tmp/audio-separator-models/',
|
73 |
+
'output',
|
74 |
+
'wav',
|
75 |
+
0.9,
|
76 |
+
0,
|
77 |
+
1,
|
78 |
+
'NAME_(STEM)_MODEL',
|
79 |
+
'NAME_(STEM)_MODEL',
|
80 |
+
'NAME_(STEM)_MODEL',
|
81 |
+
'NAME_(STEM)_MODEL',
|
82 |
+
'NAME_(STEM)_MODEL',
|
83 |
+
'NAME_(STEM)_MODEL',
|
84 |
+
'NAME_(STEM)_MODEL',
|
85 |
+
],
|
86 |
+
'event_data': None,
|
87 |
+
'fn_index': 5,
|
88 |
+
'trigger_id': 28,
|
89 |
+
'session_hash': session_hash,
|
90 |
+
}
|
91 |
+
|
92 |
+
response = requests.post(
|
93 |
+
'https://politrees-audio-separator-uvr.hf.space/gradio_api/queue/join',
|
94 |
+
params=params,
|
95 |
+
headers=headers,
|
96 |
+
json=json_payload,
|
97 |
+
)
|
98 |
+
|
99 |
+
max_retries = 5
|
100 |
+
retry_delay = 5
|
101 |
+
retry_count = 0
|
102 |
+
while retry_count < max_retries:
|
103 |
+
try:
|
104 |
+
print(f"Connecting to stream... Attempt {retry_count + 1}")
|
105 |
+
r = requests.get(
|
106 |
+
f'https://politrees-audio-separator-uvr.hf.space/gradio_api/queue/data?session_hash={session_hash}',
|
107 |
+
stream=True
|
108 |
+
)
|
109 |
+
|
110 |
+
if r.status_code != 200:
|
111 |
+
raise Exception(f"Failed to connect: HTTP {r.status_code}")
|
112 |
+
|
113 |
+
print("Connected successfully.")
|
114 |
+
for line in r.iter_lines():
|
115 |
+
if line:
|
116 |
+
json_resp = json.loads(line.decode('utf-8').replace('data: ', ''))
|
117 |
+
print(json_resp)
|
118 |
+
if 'process_completed' in json_resp['msg']:
|
119 |
+
print("Process completed.")
|
120 |
+
output_url = json_resp['output']['data'][1]['url']
|
121 |
+
print(f"Output URL: {output_url}")
|
122 |
+
return output_url
|
123 |
+
print("Stream ended prematurely. Reconnecting...")
|
124 |
+
|
125 |
+
except Exception as e:
|
126 |
+
print(f"Error occurred: {e}. Retrying...")
|
127 |
+
|
128 |
+
retry_count += 1
|
129 |
+
time.sleep(retry_delay)
|
130 |
+
|
131 |
+
print("Max retries reached. Exiting.")
|
132 |
+
return None
|
133 |
+
except Exception as ex:
|
134 |
+
print(f"Unexpected error in get_vocals: {ex}")
|
135 |
+
return None
|
136 |
+
|
137 |
+
# -------------------------------
|
138 |
+
# Normalization Function
|
139 |
+
# -------------------------------
|
140 |
+
def normalize_audio(audio, threshold_ratio=0.6):
|
141 |
+
"""
|
142 |
+
Given an audio signal (numpy array), set to 0 any samples that are below
|
143 |
+
a given ratio of the maximum absolute amplitude. This is a simple way to
|
144 |
+
suppress relatively quieter (background) parts.
|
145 |
+
"""
|
146 |
+
max_val = np.max(np.abs(audio))
|
147 |
+
threshold = threshold_ratio * max_val
|
148 |
+
normalized_audio = np.where(np.abs(audio) >= threshold, audio, 0)
|
149 |
+
return normalized_audio
|
150 |
+
|
151 |
+
# -------------------------------
|
152 |
+
# Logging and Model Setup
|
153 |
+
# -------------------------------
|
154 |
logging.basicConfig(level=logging.INFO)
|
155 |
logger = logging.getLogger("whisperx_app")
|
156 |
|
|
|
157 |
device = "cpu"
|
158 |
compute_type = "int8"
|
159 |
torch.set_num_threads(os.cpu_count())
|
160 |
|
|
|
161 |
models = {
|
162 |
"tiny": whisperx.load_model("tiny", device, compute_type=compute_type, vad_method='silero'),
|
163 |
"base": whisperx.load_model("base", device, compute_type=compute_type, vad_method='silero'),
|
|
|
173 |
Adjacent non-silent intervals are merged if the gap between them is less than the pause_threshold.
|
174 |
Returns a list of (start_sample, end_sample) tuples.
|
175 |
"""
|
|
|
176 |
intervals = librosa.effects.split(audio, top_db=top_db)
|
177 |
if intervals.size == 0:
|
178 |
return [(0, len(audio))]
|
|
|
181 |
current_start, current_end = intervals[0]
|
182 |
|
183 |
for start, end in intervals[1:]:
|
|
|
184 |
gap_duration = (start - current_end) / sr
|
185 |
if gap_duration < pause_threshold:
|
|
|
186 |
current_end = end
|
187 |
else:
|
188 |
merged_intervals.append((current_start, current_end))
|
|
|
190 |
merged_intervals.append((current_start, current_end))
|
191 |
return merged_intervals
|
192 |
|
193 |
+
# -------------------------------
|
194 |
+
# Main Transcription Function
|
195 |
+
# -------------------------------
|
196 |
+
def transcribe(audio_file, model_size="base", debug=False, pause_threshold=0.0, vocal_extraction=False, language="en"):
|
197 |
start_time = time.time()
|
198 |
final_result = ""
|
199 |
debug_log = []
|
200 |
|
201 |
try:
|
202 |
+
# If vocal extraction is enabled, process the file first
|
203 |
+
if vocal_extraction:
|
204 |
+
debug_log.append("Vocal extraction enabled; processing input file for vocals...")
|
205 |
+
extracted_url = get_vocals(audio_file)
|
206 |
+
if extracted_url is not None:
|
207 |
+
debug_log.append("Vocal extraction succeeded; downloading extracted audio...")
|
208 |
+
response = requests.get(extracted_url)
|
209 |
+
if response.status_code == 200:
|
210 |
+
# Write to a temporary file
|
211 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp:
|
212 |
+
tmp.write(response.content)
|
213 |
+
audio_file = tmp.name
|
214 |
+
debug_log.append("Extracted audio downloaded and saved for transcription.")
|
215 |
+
else:
|
216 |
+
debug_log.append("Failed to download extracted audio; proceeding with original file.")
|
217 |
+
else:
|
218 |
+
debug_log.append("Vocal extraction failed; proceeding with original audio.")
|
219 |
+
|
220 |
# Load audio file at 16kHz
|
221 |
audio, sr = librosa.load(audio_file, sr=16000)
|
222 |
debug_log.append(f"Audio loaded: {len(audio)/sr:.2f} seconds long at {sr} Hz")
|
223 |
|
224 |
+
# If we used vocal extraction, apply normalization to remove low-amplitude (background) parts
|
225 |
+
if vocal_extraction:
|
226 |
+
audio = normalize_audio(audio)
|
227 |
+
debug_log.append("Normalization applied to extracted audio to remove low-amplitude segments.")
|
228 |
+
|
229 |
+
# Select the model and set batch size
|
230 |
model = models[model_size]
|
231 |
batch_size = 8 if model_size == "tiny" else 4
|
232 |
|
233 |
+
# Use the provided language if set; otherwise, let the model detect the language.
|
234 |
+
if language:
|
235 |
+
transcript = model.transcribe(audio, batch_size=batch_size, language=language)
|
236 |
+
else:
|
237 |
+
transcript = model.transcribe(audio, batch_size=batch_size)
|
238 |
+
language = transcript.get("language", "unknown")
|
239 |
+
|
240 |
+
# Load alignment model using the specified/overridden language
|
241 |
+
model_a, metadata = whisperx.load_align_model(language_code=language, device=device)
|
242 |
+
|
243 |
+
# If pause_threshold > 0, split the audio and process segments individually
|
244 |
if pause_threshold > 0:
|
245 |
segments = split_audio_by_pause(audio, sr, pause_threshold)
|
246 |
debug_log.append(f"Audio split into {len(segments)} segment(s) using a pause threshold of {pause_threshold}s")
|
|
|
247 |
for seg_idx, (seg_start, seg_end) in enumerate(segments):
|
248 |
audio_segment = audio[seg_start:seg_end]
|
249 |
seg_duration = (seg_end - seg_start) / sr
|
250 |
debug_log.append(f"Segment {seg_idx+1}: start={seg_start/sr:.2f}s, duration={seg_duration:.2f}s")
|
251 |
|
252 |
+
seg_transcript = model.transcribe(audio_segment, batch_size=batch_size, language=language)
|
253 |
+
seg_aligned = whisperx.align(
|
254 |
+
seg_transcript["segments"], model_a, metadata, audio_segment, device
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
)
|
256 |
+
for segment in seg_aligned["segments"]:
|
|
|
|
|
257 |
for word in segment["words"]:
|
|
|
258 |
adjusted_start = word['start'] + seg_start/sr
|
259 |
adjusted_end = word['end'] + seg_start/sr
|
260 |
final_result += f"[{adjusted_start:5.2f}s-{adjusted_end:5.2f}s] {word['word']}\n"
|
261 |
else:
|
262 |
# Process the entire audio without splitting
|
263 |
+
transcript = model.transcribe(audio, batch_size=batch_size, language=language)
|
264 |
+
aligned = whisperx.align(
|
|
|
|
|
|
|
265 |
transcript["segments"], model_a, metadata, audio, device
|
266 |
)
|
267 |
+
for segment in aligned["segments"]:
|
268 |
for word in segment["words"]:
|
269 |
final_result += f"[{word['start']:5.2f}s-{word['end']:5.2f}s] {word['word']}\n"
|
270 |
|
271 |
+
debug_log.append(f"Language used: {language}")
|
272 |
debug_log.append(f"Batch size: {batch_size}")
|
273 |
debug_log.append(f"Processed in {time.time()-start_time:.2f}s")
|
274 |
|
|
|
281 |
return final_result, "\n".join(debug_log)
|
282 |
return final_result
|
283 |
|
284 |
+
# -------------------------------
|
285 |
# Gradio Interface
|
286 |
+
# -------------------------------
|
287 |
with gr.Blocks(title="WhisperX CPU Transcription") as demo:
|
288 |
+
gr.Markdown("# WhisperX CPU Transcription with Vocal Extraction Option")
|
289 |
|
290 |
with gr.Row():
|
291 |
with gr.Column():
|
|
|
301 |
label="Model Size",
|
302 |
interactive=True,
|
303 |
)
|
|
|
304 |
pause_threshold_slider = gr.Slider(
|
305 |
minimum=0, maximum=5, step=0.1, value=0,
|
306 |
label="Pause Threshold (seconds)",
|
307 |
interactive=True,
|
308 |
info="Set a pause duration threshold. Audio pauses longer than this will be used to split the audio into segments."
|
309 |
)
|
310 |
+
# New input for vocal extraction feature
|
311 |
+
vocal_extraction_checkbox = gr.Checkbox(
|
312 |
+
label="Extract Vocals (improves accuracy on noisy audio)",
|
313 |
+
value=False
|
314 |
+
)
|
315 |
+
# New language selection (default English)
|
316 |
+
language_input = gr.Textbox(
|
317 |
+
label="Language Code (e.g., en, es, fr)",
|
318 |
+
placeholder="Enter language code",
|
319 |
+
value="en"
|
320 |
+
)
|
321 |
debug_checkbox = gr.Checkbox(label="Enable Debug Mode", value=False)
|
322 |
transcribe_btn = gr.Button("Transcribe", variant="primary")
|
323 |
|
|
|
325 |
output_text = gr.Textbox(
|
326 |
label="Transcription Output",
|
327 |
lines=20,
|
328 |
+
placeholder="Transcription will appear here..."
|
329 |
)
|
330 |
debug_output = gr.Textbox(
|
331 |
label="Debug Information",
|
|
|
344 |
outputs=[debug_output]
|
345 |
)
|
346 |
|
347 |
+
# Process transcription with all new parameters
|
348 |
transcribe_btn.click(
|
349 |
transcribe,
|
350 |
+
inputs=[audio_input, model_selector, debug_checkbox, pause_threshold_slider, vocal_extraction_checkbox, language_input],
|
351 |
outputs=[output_text, debug_output]
|
352 |
)
|
353 |
|
354 |
+
# -------------------------------
|
355 |
+
# Launch the App
|
356 |
+
# -------------------------------
|
357 |
if __name__ == "__main__":
|
358 |
demo.queue(max_size=4).launch()
|