Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import whisperx
|
3 |
+
import torch
|
4 |
+
import librosa
|
5 |
+
import logging
|
6 |
+
import os
|
7 |
+
import time
|
8 |
+
|
9 |
+
# Configure logging
|
10 |
+
logging.basicConfig(level=logging.INFO)
|
11 |
+
logger = logging.getLogger("whisperx_app")
|
12 |
+
|
13 |
+
# Device setup (force CPU)
|
14 |
+
device = "cpu"
|
15 |
+
torch.set_num_threads(os.cpu_count())
|
16 |
+
|
17 |
+
# Pre-load models
|
18 |
+
models = {
|
19 |
+
"tiny": whisperx.load_model("tiny", device),
|
20 |
+
"base": whisperx.load_model("base", device),
|
21 |
+
"small": whisperx.load_model("small", device),
|
22 |
+
}
|
23 |
+
|
24 |
+
def transcribe(audio_file, model_size="base", debug=False):
|
25 |
+
start_time = time.time()
|
26 |
+
result = ""
|
27 |
+
debug_log = []
|
28 |
+
|
29 |
+
try:
|
30 |
+
# Load audio file
|
31 |
+
audio, sr = librosa.load(audio_file, sr=16000)
|
32 |
+
|
33 |
+
# Run inference
|
34 |
+
model = models[model_size]
|
35 |
+
batch_size = 8 if model_size == "tiny" else 4
|
36 |
+
transcript = model.transcribe(audio, batch_size=batch_size)
|
37 |
+
|
38 |
+
# Align whisper output
|
39 |
+
model_a, metadata = whisperx.load_align_model(
|
40 |
+
language_code=transcript["language"], device=device
|
41 |
+
)
|
42 |
+
transcript_aligned = whisperx.align(
|
43 |
+
transcript["segments"], model_a, metadata, audio, device
|
44 |
+
)
|
45 |
+
|
46 |
+
# Format word-level output
|
47 |
+
for segment in transcript_aligned["segments"]:
|
48 |
+
for word in segment["words"]:
|
49 |
+
result += f"[{word['start']:5.2f}s-{word['end']:5.2f}s] {word['word']}\n"
|
50 |
+
|
51 |
+
debug_log.append(f"Processed in {time.time()-start_time:.2f}s")
|
52 |
+
debug_log.append(f"Language detected: {transcript['language']}")
|
53 |
+
debug_log.append(f"Batch size: {batch_size}")
|
54 |
+
|
55 |
+
except Exception as e:
|
56 |
+
logger.error("Error during transcription:", exc_info=True)
|
57 |
+
result = "Error occurred during transcription"
|
58 |
+
debug_log.append(f"ERROR: {str(e)}")
|
59 |
+
|
60 |
+
if debug:
|
61 |
+
return result, "\n".join(debug_log)
|
62 |
+
return result
|
63 |
+
|
64 |
+
# Gradio Interface
|
65 |
+
with gr.Blocks(title="WhisperX CPU Transcription") as demo:
|
66 |
+
gr.Markdown("# WhisperX CPU Transcription with Word-Level Timestamps")
|
67 |
+
|
68 |
+
with gr.Row():
|
69 |
+
with gr.Column():
|
70 |
+
audio_input = gr.Audio(
|
71 |
+
label="Upload Audio File",
|
72 |
+
type="filepath",
|
73 |
+
sources=["upload", "microphone"],
|
74 |
+
interactive=True,
|
75 |
+
)
|
76 |
+
model_selector = gr.Dropdown(
|
77 |
+
choices=["tiny", "base", "small"],
|
78 |
+
value="base",
|
79 |
+
label="Model Size",
|
80 |
+
interactive=True,
|
81 |
+
)
|
82 |
+
debug_checkbox = gr.Checkbox(label="Enable Debug Mode", value=False)
|
83 |
+
transcribe_btn = gr.Button("Transcribe", variant="primary")
|
84 |
+
|
85 |
+
with gr.Column():
|
86 |
+
output_text = gr.Textbox(
|
87 |
+
label="Transcription Output",
|
88 |
+
lines=20,
|
89 |
+
placeholder="Transcription will appear here...",
|
90 |
+
)
|
91 |
+
debug_output = gr.Textbox(
|
92 |
+
label="Debug Information",
|
93 |
+
lines=10,
|
94 |
+
placeholder="Debug logs will appear here...",
|
95 |
+
visible=False,
|
96 |
+
)
|
97 |
+
|
98 |
+
# Toggle debug visibility
|
99 |
+
def toggle_debug(debug_enabled):
|
100 |
+
return gr.update(visible=debug_enabled)
|
101 |
+
|
102 |
+
debug_checkbox.change(
|
103 |
+
toggle_debug,
|
104 |
+
inputs=[debug_checkbox],
|
105 |
+
outputs=[debug_output]
|
106 |
+
)
|
107 |
+
|
108 |
+
# Process transcription
|
109 |
+
transcribe_btn.click(
|
110 |
+
transcribe,
|
111 |
+
inputs=[audio_input, model_selector, debug_checkbox],
|
112 |
+
outputs=[output_text, debug_output]
|
113 |
+
)
|
114 |
+
|
115 |
+
# Launch configuration
|
116 |
+
if __name__ == "__main__":
|
117 |
+
demo.queue(max_size=4).launch()
|