Spaces:
Runtime error
Runtime error
Upload 4 files
Browse files- .gitattributes +5 -0
- README.md +8 -7
- app.py +410 -0
- requirements.txt +5 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,8 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
examples/IMG_0860.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
examples/winter_kiking.png filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
examples/winter_hiking.png filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
examples/santa.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
examples/mona_diner.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,12 +1,13 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 4.
|
| 8 |
app_file: app.py
|
| 9 |
-
pinned:
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Image to Music v2
|
| 3 |
+
emoji: 🎺
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: pink
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.16.0
|
| 8 |
app_file: app.py
|
| 9 |
+
pinned: true
|
| 10 |
+
short_description: Get a music sample inspired by the mood of an image
|
| 11 |
---
|
| 12 |
|
| 13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import spaces
|
| 3 |
+
import json
|
| 4 |
+
import re
|
| 5 |
+
import random
|
| 6 |
+
import numpy as np
|
| 7 |
+
from gradio_client import Client
|
| 8 |
+
|
| 9 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 10 |
+
|
| 11 |
+
def check_api(model_name):
|
| 12 |
+
if model_name == "MAGNet":
|
| 13 |
+
try :
|
| 14 |
+
client = Client("https://fffiloni-magnet.hf.space/")
|
| 15 |
+
return "api ready"
|
| 16 |
+
except :
|
| 17 |
+
return "api not ready yet"
|
| 18 |
+
elif model_name == "AudioLDM-2":
|
| 19 |
+
try :
|
| 20 |
+
client = Client("https://haoheliu-audioldm2-text2audio-text2music.hf.space/")
|
| 21 |
+
return "api ready"
|
| 22 |
+
except :
|
| 23 |
+
return "api not ready yet"
|
| 24 |
+
elif model_name == "Riffusion":
|
| 25 |
+
try :
|
| 26 |
+
client = Client("https://fffiloni-spectrogram-to-music.hf.space/")
|
| 27 |
+
return "api ready"
|
| 28 |
+
except :
|
| 29 |
+
return "api not ready yet"
|
| 30 |
+
elif model_name == "Mustango":
|
| 31 |
+
try :
|
| 32 |
+
client = Client("https://declare-lab-mustango.hf.space/")
|
| 33 |
+
return "api ready"
|
| 34 |
+
except :
|
| 35 |
+
return "api not ready yet"
|
| 36 |
+
elif model_name == "MusicGen":
|
| 37 |
+
try :
|
| 38 |
+
client = Client("https://facebook-musicgen.hf.space/")
|
| 39 |
+
return "api ready"
|
| 40 |
+
except :
|
| 41 |
+
return "api not ready yet"
|
| 42 |
+
|
| 43 |
+
from moviepy.editor import VideoFileClip
|
| 44 |
+
from moviepy.audio.AudioClip import AudioClip
|
| 45 |
+
|
| 46 |
+
def extract_audio(video_in):
|
| 47 |
+
input_video = video_in
|
| 48 |
+
output_audio = 'audio.wav'
|
| 49 |
+
|
| 50 |
+
# Open the video file and extract the audio
|
| 51 |
+
video_clip = VideoFileClip(input_video)
|
| 52 |
+
audio_clip = video_clip.audio
|
| 53 |
+
|
| 54 |
+
# Save the audio as a .wav file
|
| 55 |
+
audio_clip.write_audiofile(output_audio, fps=44100) # Use 44100 Hz as the sample rate for .wav files
|
| 56 |
+
print("Audio extraction complete.")
|
| 57 |
+
|
| 58 |
+
return 'audio.wav'
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def get_caption(image_in):
|
| 63 |
+
kosmos2_client = Client("https://ydshieh-kosmos-2.hf.space/")
|
| 64 |
+
kosmos2_result = kosmos2_client.predict(
|
| 65 |
+
image_in, # str (filepath or URL to image) in 'Test Image' Image component
|
| 66 |
+
"Detailed", # str in 'Description Type' Radio component
|
| 67 |
+
fn_index=4
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
print(f"KOSMOS2 RETURNS: {kosmos2_result}")
|
| 71 |
+
|
| 72 |
+
with open(kosmos2_result[1], 'r') as f:
|
| 73 |
+
data = json.load(f)
|
| 74 |
+
|
| 75 |
+
reconstructed_sentence = []
|
| 76 |
+
for sublist in data:
|
| 77 |
+
reconstructed_sentence.append(sublist[0])
|
| 78 |
+
|
| 79 |
+
full_sentence = ' '.join(reconstructed_sentence)
|
| 80 |
+
#print(full_sentence)
|
| 81 |
+
|
| 82 |
+
# Find the pattern matching the expected format ("Describe this image in detail:" followed by optional space and then the rest)...
|
| 83 |
+
pattern = r'^Describe this image in detail:\s*(.*)$'
|
| 84 |
+
# Apply the regex pattern to extract the description text.
|
| 85 |
+
match = re.search(pattern, full_sentence)
|
| 86 |
+
if match:
|
| 87 |
+
description = match.group(1)
|
| 88 |
+
print(description)
|
| 89 |
+
else:
|
| 90 |
+
print("Unable to locate valid description.")
|
| 91 |
+
|
| 92 |
+
# Find the last occurrence of "."
|
| 93 |
+
#last_period_index = full_sentence.rfind('.')
|
| 94 |
+
|
| 95 |
+
# Truncate the string up to the last period
|
| 96 |
+
#truncated_caption = full_sentence[:last_period_index + 1]
|
| 97 |
+
|
| 98 |
+
# print(truncated_caption)
|
| 99 |
+
#print(f"\n—\nIMAGE CAPTION: {truncated_caption}")
|
| 100 |
+
|
| 101 |
+
return description
|
| 102 |
+
|
| 103 |
+
def get_caption_from_MD(image_in):
|
| 104 |
+
client = Client("https://vikhyatk-moondream1.hf.space/")
|
| 105 |
+
result = client.predict(
|
| 106 |
+
image_in, # filepath in 'image' Image component
|
| 107 |
+
"Describe precisely the image.", # str in 'Question' Textbox component
|
| 108 |
+
api_name="/answer_question"
|
| 109 |
+
)
|
| 110 |
+
print(result)
|
| 111 |
+
return result
|
| 112 |
+
|
| 113 |
+
def get_magnet(prompt):
|
| 114 |
+
|
| 115 |
+
client = Client("https://fffiloni-magnet.hf.space/")
|
| 116 |
+
result = client.predict(
|
| 117 |
+
"facebook/magnet-small-10secs", # Literal['facebook/magnet-small-10secs', 'facebook/magnet-medium-10secs', 'facebook/magnet-small-30secs', 'facebook/magnet-medium-30secs', 'facebook/audio-magnet-small', 'facebook/audio-magnet-medium'] in 'Model' Radio component
|
| 118 |
+
"", # str in 'Model Path (custom models)' Textbox component
|
| 119 |
+
prompt, # str in 'Input Text' Textbox component
|
| 120 |
+
3, # float in 'Temperature' Number component
|
| 121 |
+
0.9, # float in 'Top-p' Number component
|
| 122 |
+
10, # float in 'Max CFG coefficient' Number component
|
| 123 |
+
1, # float in 'Min CFG coefficient' Number component
|
| 124 |
+
20, # float in 'Decoding Steps (stage 1)' Number component
|
| 125 |
+
10, # float in 'Decoding Steps (stage 2)' Number component
|
| 126 |
+
10, # float in 'Decoding Steps (stage 3)' Number component
|
| 127 |
+
10, # float in 'Decoding Steps (stage 4)' Number component
|
| 128 |
+
"prod-stride1 (new!)", # Literal['max-nonoverlap', 'prod-stride1 (new!)'] in 'Span Scoring' Radio component
|
| 129 |
+
api_name="/predict_full"
|
| 130 |
+
)
|
| 131 |
+
print(result)
|
| 132 |
+
return result[1]
|
| 133 |
+
|
| 134 |
+
def get_audioldm(prompt):
|
| 135 |
+
client = Client("https://haoheliu-audioldm2-text2audio-text2music.hf.space/")
|
| 136 |
+
seed = random.randint(0, MAX_SEED)
|
| 137 |
+
result = client.predict(
|
| 138 |
+
prompt, # str in 'Input text' Textbox component
|
| 139 |
+
"Low quality.", # str in 'Negative prompt' Textbox component
|
| 140 |
+
10, # int | float (numeric value between 5 and 15) in 'Duration (seconds)' Slider component
|
| 141 |
+
6.5, # int | float (numeric value between 0 and 7) in 'Guidance scale' Slider component
|
| 142 |
+
seed, # int | float in 'Seed' Number component
|
| 143 |
+
3, # int | float (numeric value between 1 and 5) in 'Number waveforms to generate' Slider component
|
| 144 |
+
fn_index=1
|
| 145 |
+
)
|
| 146 |
+
print(result)
|
| 147 |
+
audio_result = extract_audio(result)
|
| 148 |
+
return audio_result
|
| 149 |
+
|
| 150 |
+
def get_riffusion(prompt):
|
| 151 |
+
client = Client("https://fffiloni-spectrogram-to-music.hf.space/")
|
| 152 |
+
result = client.predict(
|
| 153 |
+
prompt, # str in 'Musical prompt' Textbox component
|
| 154 |
+
"", # str in 'Negative prompt' Textbox component
|
| 155 |
+
None, # filepath in 'parameter_4' Audio component
|
| 156 |
+
10, # float (numeric value between 5 and 10) in 'Duration in seconds' Slider component
|
| 157 |
+
api_name="/predict"
|
| 158 |
+
)
|
| 159 |
+
print(result)
|
| 160 |
+
return result[1]
|
| 161 |
+
|
| 162 |
+
def get_mustango(prompt):
|
| 163 |
+
client = Client("https://declare-lab-mustango.hf.space/")
|
| 164 |
+
result = client.predict(
|
| 165 |
+
prompt, # str in 'Prompt' Textbox component
|
| 166 |
+
200, # float (numeric value between 100 and 200) in 'Steps' Slider component
|
| 167 |
+
6, # float (numeric value between 1 and 10) in 'Guidance Scale' Slider component
|
| 168 |
+
api_name="/predict"
|
| 169 |
+
)
|
| 170 |
+
print(result)
|
| 171 |
+
return result
|
| 172 |
+
|
| 173 |
+
def get_musicgen(prompt):
|
| 174 |
+
client = Client("https://facebook-musicgen.hf.space/")
|
| 175 |
+
result = client.predict(
|
| 176 |
+
prompt, # str in 'Describe your music' Textbox component
|
| 177 |
+
None, # str (filepath or URL to file) in 'File' Audio component
|
| 178 |
+
fn_index=0
|
| 179 |
+
)
|
| 180 |
+
print(result)
|
| 181 |
+
return result[1]
|
| 182 |
+
|
| 183 |
+
import re
|
| 184 |
+
import torch
|
| 185 |
+
from transformers import pipeline
|
| 186 |
+
|
| 187 |
+
zephyr_model = "HuggingFaceH4/zephyr-7b-beta"
|
| 188 |
+
mixtral_model = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
| 189 |
+
|
| 190 |
+
pipe = pipeline("text-generation", model=zephyr_model, torch_dtype=torch.bfloat16, device_map="auto")
|
| 191 |
+
|
| 192 |
+
standard_sys = f"""
|
| 193 |
+
You are a musician AI whose job is to help users create their own music which its genre will reflect the character or scene from an image described by users.
|
| 194 |
+
In particular, you need to respond succintly with few musical words, in a friendly tone, write a musical prompt for a music generation model.
|
| 195 |
+
|
| 196 |
+
For example, if a user says, "a picture of a man in a black suit and tie riding a black dragon", provide immediately a musical prompt corresponding to the image description.
|
| 197 |
+
Immediately STOP after that. It should be EXACTLY in this format:
|
| 198 |
+
"A grand orchestral arrangement with thunderous percussion, epic brass fanfares, and soaring strings, creating a cinematic atmosphere fit for a heroic battle"
|
| 199 |
+
"""
|
| 200 |
+
|
| 201 |
+
mustango_sys = f"""
|
| 202 |
+
You are a musician AI whose job is to help users create their own music which its genre will reflect the character or scene from an image described by users.
|
| 203 |
+
In particular, you need to respond succintly with few musical words, in a friendly tone, write a musical prompt for a music generation model, you MUST include chords progression.
|
| 204 |
+
|
| 205 |
+
For example, if a user says, "a painting of three old women having tea party", provide immediately a musical prompt corresponding to the image description.
|
| 206 |
+
Immediately STOP after that. It should be EXACTLY in this format:
|
| 207 |
+
"The song is an instrumental. The song is in medium tempo with a classical guitar playing a lilting melody in accompaniment style. The song is emotional and romantic. The song is a romantic instrumental song. The chord sequence is Gm, F6, Ebm. The time signature is 4/4. This song is in Adagio. The key of this song is G minor."
|
| 208 |
+
"""
|
| 209 |
+
|
| 210 |
+
@spaces.GPU(enable_queue=True)
|
| 211 |
+
def get_musical_prompt(user_prompt, chosen_model):
|
| 212 |
+
|
| 213 |
+
"""
|
| 214 |
+
if chosen_model == "Mustango" :
|
| 215 |
+
agent_maker_sys = standard_sys
|
| 216 |
+
else :
|
| 217 |
+
agent_maker_sys = standard_sys
|
| 218 |
+
"""
|
| 219 |
+
agent_maker_sys = standard_sys
|
| 220 |
+
|
| 221 |
+
instruction = f"""
|
| 222 |
+
<|system|>
|
| 223 |
+
{agent_maker_sys}</s>
|
| 224 |
+
<|user|>
|
| 225 |
+
"""
|
| 226 |
+
|
| 227 |
+
prompt = f"{instruction.strip()}\n{user_prompt}</s>"
|
| 228 |
+
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
| 229 |
+
pattern = r'\<\|system\|\>(.*?)\<\|assistant\|\>'
|
| 230 |
+
cleaned_text = re.sub(pattern, '', outputs[0]["generated_text"], flags=re.DOTALL)
|
| 231 |
+
|
| 232 |
+
print(f"SUGGESTED Musical prompt: {cleaned_text}")
|
| 233 |
+
return cleaned_text.lstrip("\n")
|
| 234 |
+
|
| 235 |
+
def infer(image_in, chosen_model, api_status):
|
| 236 |
+
if image_in == None :
|
| 237 |
+
raise gr.Error("Please provide an image input")
|
| 238 |
+
|
| 239 |
+
if chosen_model == [] :
|
| 240 |
+
raise gr.Error("Please pick a model")
|
| 241 |
+
|
| 242 |
+
if api_status == "api not ready yet" :
|
| 243 |
+
raise gr.Error("This model is not ready yet, you can pick another one instead :)")
|
| 244 |
+
|
| 245 |
+
gr.Info("Getting image caption with Kosmos2...")
|
| 246 |
+
user_prompt = get_caption(image_in)
|
| 247 |
+
|
| 248 |
+
gr.Info("Building a musical prompt according to the image caption ...")
|
| 249 |
+
musical_prompt = get_musical_prompt(user_prompt, chosen_model)
|
| 250 |
+
|
| 251 |
+
if chosen_model == "MAGNet" :
|
| 252 |
+
gr.Info("Now calling MAGNet for music...")
|
| 253 |
+
music_o = get_magnet(musical_prompt)
|
| 254 |
+
elif chosen_model == "AudioLDM-2" :
|
| 255 |
+
gr.Info("Now calling AudioLDM-2 for music...")
|
| 256 |
+
music_o = get_audioldm(musical_prompt)
|
| 257 |
+
elif chosen_model == "Riffusion" :
|
| 258 |
+
gr.Info("Now calling Riffusion for music...")
|
| 259 |
+
music_o = get_riffusion(musical_prompt)
|
| 260 |
+
elif chosen_model == "Mustango" :
|
| 261 |
+
gr.Info("Now calling Mustango for music...")
|
| 262 |
+
music_o = get_mustango(musical_prompt)
|
| 263 |
+
elif chosen_model == "MusicGen" :
|
| 264 |
+
gr.Info("Now calling MusicGen for music...")
|
| 265 |
+
music_o = get_musicgen(musical_prompt)
|
| 266 |
+
|
| 267 |
+
return gr.update(value=musical_prompt, interactive=True), gr.update(visible=True), music_o
|
| 268 |
+
|
| 269 |
+
def retry(chosen_model, caption):
|
| 270 |
+
musical_prompt = caption
|
| 271 |
+
|
| 272 |
+
if chosen_model == "MAGNet" :
|
| 273 |
+
gr.Info("Now calling MAGNet for music...")
|
| 274 |
+
music_o = get_magnet(musical_prompt)
|
| 275 |
+
elif chosen_model == "AudioLDM-2" :
|
| 276 |
+
gr.Info("Now calling AudioLDM-2 for music...")
|
| 277 |
+
music_o = get_audioldm(musical_prompt)
|
| 278 |
+
elif chosen_model == "Riffusion" :
|
| 279 |
+
gr.Info("Now calling Riffusion for music...")
|
| 280 |
+
music_o = get_riffusion(musical_prompt)
|
| 281 |
+
elif chosen_model == "Mustango" :
|
| 282 |
+
gr.Info("Now calling Mustango for music...")
|
| 283 |
+
music_o = get_mustango(musical_prompt)
|
| 284 |
+
elif chosen_model == "MusicGen" :
|
| 285 |
+
gr.Info("Now calling MusicGen for music...")
|
| 286 |
+
music_o = get_musicgen(musical_prompt)
|
| 287 |
+
|
| 288 |
+
return music_o
|
| 289 |
+
|
| 290 |
+
demo_title = "Image to Music V2"
|
| 291 |
+
description = "Get music from a picture, compare text-to-music models"
|
| 292 |
+
|
| 293 |
+
css = """
|
| 294 |
+
#col-container {
|
| 295 |
+
margin: 0 auto;
|
| 296 |
+
max-width: 980px;
|
| 297 |
+
text-align: left;
|
| 298 |
+
}
|
| 299 |
+
#inspi-prompt textarea {
|
| 300 |
+
font-size: 20px;
|
| 301 |
+
line-height: 24px;
|
| 302 |
+
font-weight: 600;
|
| 303 |
+
}
|
| 304 |
+
/* fix examples gallery width on mobile */
|
| 305 |
+
div#component-11 > .gallery > .gallery-item > .container > img {
|
| 306 |
+
width: auto!important;
|
| 307 |
+
}
|
| 308 |
+
"""
|
| 309 |
+
|
| 310 |
+
with gr.Blocks(css=css) as demo:
|
| 311 |
+
|
| 312 |
+
with gr.Column(elem_id="col-container"):
|
| 313 |
+
|
| 314 |
+
gr.HTML(f"""
|
| 315 |
+
<h2 style="text-align: center;">{demo_title}</h2>
|
| 316 |
+
<p style="text-align: center;">{description}</p>
|
| 317 |
+
""")
|
| 318 |
+
|
| 319 |
+
with gr.Row():
|
| 320 |
+
|
| 321 |
+
with gr.Column():
|
| 322 |
+
image_in = gr.Image(
|
| 323 |
+
label = "Image reference",
|
| 324 |
+
type = "filepath",
|
| 325 |
+
elem_id = "image-in"
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
with gr.Row():
|
| 329 |
+
|
| 330 |
+
chosen_model = gr.Dropdown(
|
| 331 |
+
label = "Choose a model",
|
| 332 |
+
choices = [
|
| 333 |
+
"MAGNet",
|
| 334 |
+
"AudioLDM-2",
|
| 335 |
+
"Riffusion",
|
| 336 |
+
"Mustango",
|
| 337 |
+
"MusicGen"
|
| 338 |
+
],
|
| 339 |
+
value = None,
|
| 340 |
+
filterable = False
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
check_status = gr.Textbox(
|
| 344 |
+
label="API status",
|
| 345 |
+
interactive=False
|
| 346 |
+
)
|
| 347 |
+
|
| 348 |
+
submit_btn = gr.Button("Make music from my pic !")
|
| 349 |
+
|
| 350 |
+
gr.Examples(
|
| 351 |
+
examples = [
|
| 352 |
+
["examples/ocean_poet.jpeg"],
|
| 353 |
+
["examples/jasper_horace.jpeg"],
|
| 354 |
+
["examples/summer.jpeg"],
|
| 355 |
+
["examples/mona_diner.png"],
|
| 356 |
+
["examples/monalisa.png"],
|
| 357 |
+
["examples/santa.png"],
|
| 358 |
+
["examples/winter_hiking.png"],
|
| 359 |
+
["examples/teatime.jpeg"],
|
| 360 |
+
["examples/news_experts.jpeg"]
|
| 361 |
+
],
|
| 362 |
+
fn = infer,
|
| 363 |
+
inputs = [image_in, chosen_model],
|
| 364 |
+
examples_per_page = 4
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
+
with gr.Column():
|
| 368 |
+
|
| 369 |
+
caption = gr.Textbox(
|
| 370 |
+
label = "Inspirational musical prompt",
|
| 371 |
+
interactive = False,
|
| 372 |
+
elem_id = "inspi-prompt"
|
| 373 |
+
)
|
| 374 |
+
|
| 375 |
+
retry_btn = gr.Button("Retry with edited prompt", visible=False)
|
| 376 |
+
|
| 377 |
+
result = gr.Audio(
|
| 378 |
+
label = "Music"
|
| 379 |
+
)
|
| 380 |
+
|
| 381 |
+
|
| 382 |
+
chosen_model.change(
|
| 383 |
+
fn = check_api,
|
| 384 |
+
inputs = chosen_model,
|
| 385 |
+
outputs = check_status,
|
| 386 |
+
queue = False
|
| 387 |
+
)
|
| 388 |
+
|
| 389 |
+
retry_btn.click(
|
| 390 |
+
fn = retry,
|
| 391 |
+
inputs = [chosen_model, caption],
|
| 392 |
+
outputs = [result]
|
| 393 |
+
)
|
| 394 |
+
|
| 395 |
+
submit_btn.click(
|
| 396 |
+
fn = infer,
|
| 397 |
+
inputs = [
|
| 398 |
+
image_in,
|
| 399 |
+
chosen_model,
|
| 400 |
+
check_status
|
| 401 |
+
],
|
| 402 |
+
outputs =[
|
| 403 |
+
caption,
|
| 404 |
+
retry_btn,
|
| 405 |
+
result
|
| 406 |
+
],
|
| 407 |
+
concurrency_limit = 4
|
| 408 |
+
)
|
| 409 |
+
|
| 410 |
+
demo.queue(max_size=16).launch(show_api=False)
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
transformers
|
| 3 |
+
accelerate
|
| 4 |
+
moviepy
|
| 5 |
+
spaces
|