remove unused code
Browse files- README.md +11 -0
- app.py +0 -1
- attentions.py +0 -3
- commons.py +0 -3
- data_utils.py +0 -392
- losses.py +0 -4
- mel_processing.py +0 -12
- modules.py +0 -1
- preprocess.py +0 -25
README.md
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: KLEA
|
| 3 |
+
emoji: 📈
|
| 4 |
+
colorFrom: indigo
|
| 5 |
+
colorTo: purple
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 3.46.1
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: apache-2.0
|
| 11 |
+
---
|
app.py
CHANGED
|
@@ -1,7 +1,6 @@
|
|
| 1 |
# -*- coding: utf-8 -*-
|
| 2 |
import gradio as gr
|
| 3 |
from models import SynthesizerTrn
|
| 4 |
-
from scipy.io.wavfile import write
|
| 5 |
from khmer_phonemizer import phonemize_single
|
| 6 |
import utils
|
| 7 |
import commons
|
|
|
|
| 1 |
# -*- coding: utf-8 -*-
|
| 2 |
import gradio as gr
|
| 3 |
from models import SynthesizerTrn
|
|
|
|
| 4 |
from khmer_phonemizer import phonemize_single
|
| 5 |
import utils
|
| 6 |
import commons
|
attentions.py
CHANGED
|
@@ -1,10 +1,7 @@
|
|
| 1 |
-
import copy
|
| 2 |
import math
|
| 3 |
-
import numpy as np
|
| 4 |
import torch
|
| 5 |
from torch import nn
|
| 6 |
from torch.nn import functional as F
|
| 7 |
-
|
| 8 |
import commons
|
| 9 |
import modules
|
| 10 |
from modules import LayerNorm
|
|
|
|
|
|
|
| 1 |
import math
|
|
|
|
| 2 |
import torch
|
| 3 |
from torch import nn
|
| 4 |
from torch.nn import functional as F
|
|
|
|
| 5 |
import commons
|
| 6 |
import modules
|
| 7 |
from modules import LayerNorm
|
commons.py
CHANGED
|
@@ -1,10 +1,7 @@
|
|
| 1 |
import math
|
| 2 |
-
import numpy as np
|
| 3 |
import torch
|
| 4 |
-
from torch import nn
|
| 5 |
from torch.nn import functional as F
|
| 6 |
|
| 7 |
-
|
| 8 |
def init_weights(m, mean=0.0, std=0.01):
|
| 9 |
classname = m.__class__.__name__
|
| 10 |
if classname.find("Conv") != -1:
|
|
|
|
| 1 |
import math
|
|
|
|
| 2 |
import torch
|
|
|
|
| 3 |
from torch.nn import functional as F
|
| 4 |
|
|
|
|
| 5 |
def init_weights(m, mean=0.0, std=0.01):
|
| 6 |
classname = m.__class__.__name__
|
| 7 |
if classname.find("Conv") != -1:
|
data_utils.py
DELETED
|
@@ -1,392 +0,0 @@
|
|
| 1 |
-
import time
|
| 2 |
-
import os
|
| 3 |
-
import random
|
| 4 |
-
import numpy as np
|
| 5 |
-
import torch
|
| 6 |
-
import torch.utils.data
|
| 7 |
-
|
| 8 |
-
import commons
|
| 9 |
-
from mel_processing import spectrogram_torch
|
| 10 |
-
from utils import load_wav_to_torch, load_filepaths_and_text
|
| 11 |
-
from text import text_to_sequence, cleaned_text_to_sequence
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
class TextAudioLoader(torch.utils.data.Dataset):
|
| 15 |
-
"""
|
| 16 |
-
1) loads audio, text pairs
|
| 17 |
-
2) normalizes text and converts them to sequences of integers
|
| 18 |
-
3) computes spectrograms from audio files.
|
| 19 |
-
"""
|
| 20 |
-
def __init__(self, audiopaths_and_text, hparams):
|
| 21 |
-
self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text)
|
| 22 |
-
self.text_cleaners = hparams.text_cleaners
|
| 23 |
-
self.max_wav_value = hparams.max_wav_value
|
| 24 |
-
self.sampling_rate = hparams.sampling_rate
|
| 25 |
-
self.filter_length = hparams.filter_length
|
| 26 |
-
self.hop_length = hparams.hop_length
|
| 27 |
-
self.win_length = hparams.win_length
|
| 28 |
-
self.sampling_rate = hparams.sampling_rate
|
| 29 |
-
|
| 30 |
-
self.cleaned_text = getattr(hparams, "cleaned_text", False)
|
| 31 |
-
|
| 32 |
-
self.add_blank = hparams.add_blank
|
| 33 |
-
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
| 34 |
-
self.max_text_len = getattr(hparams, "max_text_len", 190)
|
| 35 |
-
|
| 36 |
-
random.seed(1234)
|
| 37 |
-
random.shuffle(self.audiopaths_and_text)
|
| 38 |
-
self._filter()
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
def _filter(self):
|
| 42 |
-
"""
|
| 43 |
-
Filter text & store spec lengths
|
| 44 |
-
"""
|
| 45 |
-
# Store spectrogram lengths for Bucketing
|
| 46 |
-
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
|
| 47 |
-
# spec_length = wav_length // hop_length
|
| 48 |
-
|
| 49 |
-
audiopaths_and_text_new = []
|
| 50 |
-
lengths = []
|
| 51 |
-
for audiopath, text in self.audiopaths_and_text:
|
| 52 |
-
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
| 53 |
-
audiopaths_and_text_new.append([audiopath, text])
|
| 54 |
-
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
|
| 55 |
-
self.audiopaths_and_text = audiopaths_and_text_new
|
| 56 |
-
self.lengths = lengths
|
| 57 |
-
|
| 58 |
-
def get_audio_text_pair(self, audiopath_and_text):
|
| 59 |
-
# separate filename and text
|
| 60 |
-
audiopath, text = audiopath_and_text[0], audiopath_and_text[1]
|
| 61 |
-
text = self.get_text(text)
|
| 62 |
-
spec, wav = self.get_audio(audiopath)
|
| 63 |
-
return (text, spec, wav)
|
| 64 |
-
|
| 65 |
-
def get_audio(self, filename):
|
| 66 |
-
audio, sampling_rate = load_wav_to_torch(filename)
|
| 67 |
-
if sampling_rate != self.sampling_rate:
|
| 68 |
-
raise ValueError("{} {} SR doesn't match target {} SR".format(
|
| 69 |
-
sampling_rate, self.sampling_rate))
|
| 70 |
-
audio_norm = audio / self.max_wav_value
|
| 71 |
-
audio_norm = audio_norm.unsqueeze(0)
|
| 72 |
-
spec_filename = filename.replace(".wav", ".spec.pt")
|
| 73 |
-
if os.path.exists(spec_filename):
|
| 74 |
-
spec = torch.load(spec_filename)
|
| 75 |
-
else:
|
| 76 |
-
spec = spectrogram_torch(audio_norm, self.filter_length,
|
| 77 |
-
self.sampling_rate, self.hop_length, self.win_length,
|
| 78 |
-
center=False)
|
| 79 |
-
spec = torch.squeeze(spec, 0)
|
| 80 |
-
torch.save(spec, spec_filename)
|
| 81 |
-
return spec, audio_norm
|
| 82 |
-
|
| 83 |
-
def get_text(self, text):
|
| 84 |
-
if self.cleaned_text:
|
| 85 |
-
text_norm = cleaned_text_to_sequence(text)
|
| 86 |
-
else:
|
| 87 |
-
text_norm = text_to_sequence(text, self.text_cleaners)
|
| 88 |
-
if self.add_blank:
|
| 89 |
-
text_norm = commons.intersperse(text_norm, 0)
|
| 90 |
-
text_norm = torch.LongTensor(text_norm)
|
| 91 |
-
return text_norm
|
| 92 |
-
|
| 93 |
-
def __getitem__(self, index):
|
| 94 |
-
return self.get_audio_text_pair(self.audiopaths_and_text[index])
|
| 95 |
-
|
| 96 |
-
def __len__(self):
|
| 97 |
-
return len(self.audiopaths_and_text)
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
class TextAudioCollate():
|
| 101 |
-
""" Zero-pads model inputs and targets
|
| 102 |
-
"""
|
| 103 |
-
def __init__(self, return_ids=False):
|
| 104 |
-
self.return_ids = return_ids
|
| 105 |
-
|
| 106 |
-
def __call__(self, batch):
|
| 107 |
-
"""Collate's training batch from normalized text and aduio
|
| 108 |
-
PARAMS
|
| 109 |
-
------
|
| 110 |
-
batch: [text_normalized, spec_normalized, wav_normalized]
|
| 111 |
-
"""
|
| 112 |
-
# Right zero-pad all one-hot text sequences to max input length
|
| 113 |
-
_, ids_sorted_decreasing = torch.sort(
|
| 114 |
-
torch.LongTensor([x[1].size(1) for x in batch]),
|
| 115 |
-
dim=0, descending=True)
|
| 116 |
-
|
| 117 |
-
max_text_len = max([len(x[0]) for x in batch])
|
| 118 |
-
max_spec_len = max([x[1].size(1) for x in batch])
|
| 119 |
-
max_wav_len = max([x[2].size(1) for x in batch])
|
| 120 |
-
|
| 121 |
-
text_lengths = torch.LongTensor(len(batch))
|
| 122 |
-
spec_lengths = torch.LongTensor(len(batch))
|
| 123 |
-
wav_lengths = torch.LongTensor(len(batch))
|
| 124 |
-
|
| 125 |
-
text_padded = torch.LongTensor(len(batch), max_text_len)
|
| 126 |
-
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
|
| 127 |
-
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
| 128 |
-
text_padded.zero_()
|
| 129 |
-
spec_padded.zero_()
|
| 130 |
-
wav_padded.zero_()
|
| 131 |
-
for i in range(len(ids_sorted_decreasing)):
|
| 132 |
-
row = batch[ids_sorted_decreasing[i]]
|
| 133 |
-
|
| 134 |
-
text = row[0]
|
| 135 |
-
text_padded[i, :text.size(0)] = text
|
| 136 |
-
text_lengths[i] = text.size(0)
|
| 137 |
-
|
| 138 |
-
spec = row[1]
|
| 139 |
-
spec_padded[i, :, :spec.size(1)] = spec
|
| 140 |
-
spec_lengths[i] = spec.size(1)
|
| 141 |
-
|
| 142 |
-
wav = row[2]
|
| 143 |
-
wav_padded[i, :, :wav.size(1)] = wav
|
| 144 |
-
wav_lengths[i] = wav.size(1)
|
| 145 |
-
|
| 146 |
-
if self.return_ids:
|
| 147 |
-
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, ids_sorted_decreasing
|
| 148 |
-
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
"""Multi speaker version"""
|
| 152 |
-
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
| 153 |
-
"""
|
| 154 |
-
1) loads audio, speaker_id, text pairs
|
| 155 |
-
2) normalizes text and converts them to sequences of integers
|
| 156 |
-
3) computes spectrograms from audio files.
|
| 157 |
-
"""
|
| 158 |
-
def __init__(self, audiopaths_sid_text, hparams):
|
| 159 |
-
self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text)
|
| 160 |
-
self.text_cleaners = hparams.text_cleaners
|
| 161 |
-
self.max_wav_value = hparams.max_wav_value
|
| 162 |
-
self.sampling_rate = hparams.sampling_rate
|
| 163 |
-
self.filter_length = hparams.filter_length
|
| 164 |
-
self.hop_length = hparams.hop_length
|
| 165 |
-
self.win_length = hparams.win_length
|
| 166 |
-
self.sampling_rate = hparams.sampling_rate
|
| 167 |
-
|
| 168 |
-
self.cleaned_text = getattr(hparams, "cleaned_text", False)
|
| 169 |
-
|
| 170 |
-
self.add_blank = hparams.add_blank
|
| 171 |
-
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
| 172 |
-
self.max_text_len = getattr(hparams, "max_text_len", 190)
|
| 173 |
-
|
| 174 |
-
random.seed(1234)
|
| 175 |
-
random.shuffle(self.audiopaths_sid_text)
|
| 176 |
-
self._filter()
|
| 177 |
-
|
| 178 |
-
def _filter(self):
|
| 179 |
-
"""
|
| 180 |
-
Filter text & store spec lengths
|
| 181 |
-
"""
|
| 182 |
-
# Store spectrogram lengths for Bucketing
|
| 183 |
-
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
|
| 184 |
-
# spec_length = wav_length // hop_length
|
| 185 |
-
|
| 186 |
-
audiopaths_sid_text_new = []
|
| 187 |
-
lengths = []
|
| 188 |
-
for audiopath, sid, text in self.audiopaths_sid_text:
|
| 189 |
-
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
| 190 |
-
audiopaths_sid_text_new.append([audiopath, sid, text])
|
| 191 |
-
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
|
| 192 |
-
self.audiopaths_sid_text = audiopaths_sid_text_new
|
| 193 |
-
self.lengths = lengths
|
| 194 |
-
|
| 195 |
-
def get_audio_text_speaker_pair(self, audiopath_sid_text):
|
| 196 |
-
# separate filename, speaker_id and text
|
| 197 |
-
audiopath, sid, text = audiopath_sid_text[0], audiopath_sid_text[1], audiopath_sid_text[2]
|
| 198 |
-
text = self.get_text(text)
|
| 199 |
-
spec, wav = self.get_audio(audiopath)
|
| 200 |
-
sid = self.get_sid(sid)
|
| 201 |
-
return (text, spec, wav, sid)
|
| 202 |
-
|
| 203 |
-
def get_audio(self, filename):
|
| 204 |
-
audio, sampling_rate = load_wav_to_torch(filename)
|
| 205 |
-
if sampling_rate != self.sampling_rate:
|
| 206 |
-
raise ValueError("{} {} SR doesn't match target {} SR".format(
|
| 207 |
-
sampling_rate, self.sampling_rate))
|
| 208 |
-
audio_norm = audio / self.max_wav_value
|
| 209 |
-
audio_norm = audio_norm.unsqueeze(0)
|
| 210 |
-
spec_filename = filename.replace(".wav", ".spec.pt")
|
| 211 |
-
if os.path.exists(spec_filename):
|
| 212 |
-
spec = torch.load(spec_filename)
|
| 213 |
-
else:
|
| 214 |
-
spec = spectrogram_torch(audio_norm, self.filter_length,
|
| 215 |
-
self.sampling_rate, self.hop_length, self.win_length,
|
| 216 |
-
center=False)
|
| 217 |
-
spec = torch.squeeze(spec, 0)
|
| 218 |
-
torch.save(spec, spec_filename)
|
| 219 |
-
return spec, audio_norm
|
| 220 |
-
|
| 221 |
-
def get_text(self, text):
|
| 222 |
-
if self.cleaned_text:
|
| 223 |
-
text_norm = cleaned_text_to_sequence(text)
|
| 224 |
-
else:
|
| 225 |
-
text_norm = text_to_sequence(text, self.text_cleaners)
|
| 226 |
-
if self.add_blank:
|
| 227 |
-
text_norm = commons.intersperse(text_norm, 0)
|
| 228 |
-
text_norm = torch.LongTensor(text_norm)
|
| 229 |
-
return text_norm
|
| 230 |
-
|
| 231 |
-
def get_sid(self, sid):
|
| 232 |
-
sid = torch.LongTensor([int(sid)])
|
| 233 |
-
return sid
|
| 234 |
-
|
| 235 |
-
def __getitem__(self, index):
|
| 236 |
-
return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
|
| 237 |
-
|
| 238 |
-
def __len__(self):
|
| 239 |
-
return len(self.audiopaths_sid_text)
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
class TextAudioSpeakerCollate():
|
| 243 |
-
""" Zero-pads model inputs and targets
|
| 244 |
-
"""
|
| 245 |
-
def __init__(self, return_ids=False):
|
| 246 |
-
self.return_ids = return_ids
|
| 247 |
-
|
| 248 |
-
def __call__(self, batch):
|
| 249 |
-
"""Collate's training batch from normalized text, audio and speaker identities
|
| 250 |
-
PARAMS
|
| 251 |
-
------
|
| 252 |
-
batch: [text_normalized, spec_normalized, wav_normalized, sid]
|
| 253 |
-
"""
|
| 254 |
-
# Right zero-pad all one-hot text sequences to max input length
|
| 255 |
-
_, ids_sorted_decreasing = torch.sort(
|
| 256 |
-
torch.LongTensor([x[1].size(1) for x in batch]),
|
| 257 |
-
dim=0, descending=True)
|
| 258 |
-
|
| 259 |
-
max_text_len = max([len(x[0]) for x in batch])
|
| 260 |
-
max_spec_len = max([x[1].size(1) for x in batch])
|
| 261 |
-
max_wav_len = max([x[2].size(1) for x in batch])
|
| 262 |
-
|
| 263 |
-
text_lengths = torch.LongTensor(len(batch))
|
| 264 |
-
spec_lengths = torch.LongTensor(len(batch))
|
| 265 |
-
wav_lengths = torch.LongTensor(len(batch))
|
| 266 |
-
sid = torch.LongTensor(len(batch))
|
| 267 |
-
|
| 268 |
-
text_padded = torch.LongTensor(len(batch), max_text_len)
|
| 269 |
-
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
|
| 270 |
-
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
| 271 |
-
text_padded.zero_()
|
| 272 |
-
spec_padded.zero_()
|
| 273 |
-
wav_padded.zero_()
|
| 274 |
-
for i in range(len(ids_sorted_decreasing)):
|
| 275 |
-
row = batch[ids_sorted_decreasing[i]]
|
| 276 |
-
|
| 277 |
-
text = row[0]
|
| 278 |
-
text_padded[i, :text.size(0)] = text
|
| 279 |
-
text_lengths[i] = text.size(0)
|
| 280 |
-
|
| 281 |
-
spec = row[1]
|
| 282 |
-
spec_padded[i, :, :spec.size(1)] = spec
|
| 283 |
-
spec_lengths[i] = spec.size(1)
|
| 284 |
-
|
| 285 |
-
wav = row[2]
|
| 286 |
-
wav_padded[i, :, :wav.size(1)] = wav
|
| 287 |
-
wav_lengths[i] = wav.size(1)
|
| 288 |
-
|
| 289 |
-
sid[i] = row[3]
|
| 290 |
-
|
| 291 |
-
if self.return_ids:
|
| 292 |
-
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid, ids_sorted_decreasing
|
| 293 |
-
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
| 297 |
-
"""
|
| 298 |
-
Maintain similar input lengths in a batch.
|
| 299 |
-
Length groups are specified by boundaries.
|
| 300 |
-
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
|
| 301 |
-
|
| 302 |
-
It removes samples which are not included in the boundaries.
|
| 303 |
-
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
|
| 304 |
-
"""
|
| 305 |
-
def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
|
| 306 |
-
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
|
| 307 |
-
self.lengths = dataset.lengths
|
| 308 |
-
self.batch_size = batch_size
|
| 309 |
-
self.boundaries = boundaries
|
| 310 |
-
|
| 311 |
-
self.buckets, self.num_samples_per_bucket = self._create_buckets()
|
| 312 |
-
self.total_size = sum(self.num_samples_per_bucket)
|
| 313 |
-
self.num_samples = self.total_size // self.num_replicas
|
| 314 |
-
|
| 315 |
-
def _create_buckets(self):
|
| 316 |
-
buckets = [[] for _ in range(len(self.boundaries) - 1)]
|
| 317 |
-
for i in range(len(self.lengths)):
|
| 318 |
-
length = self.lengths[i]
|
| 319 |
-
idx_bucket = self._bisect(length)
|
| 320 |
-
if idx_bucket != -1:
|
| 321 |
-
buckets[idx_bucket].append(i)
|
| 322 |
-
|
| 323 |
-
for i in range(len(buckets) - 1, 0, -1):
|
| 324 |
-
if len(buckets[i]) == 0:
|
| 325 |
-
buckets.pop(i)
|
| 326 |
-
self.boundaries.pop(i+1)
|
| 327 |
-
|
| 328 |
-
num_samples_per_bucket = []
|
| 329 |
-
for i in range(len(buckets)):
|
| 330 |
-
len_bucket = len(buckets[i])
|
| 331 |
-
total_batch_size = self.num_replicas * self.batch_size
|
| 332 |
-
rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
|
| 333 |
-
num_samples_per_bucket.append(len_bucket + rem)
|
| 334 |
-
return buckets, num_samples_per_bucket
|
| 335 |
-
|
| 336 |
-
def __iter__(self):
|
| 337 |
-
# deterministically shuffle based on epoch
|
| 338 |
-
g = torch.Generator()
|
| 339 |
-
g.manual_seed(self.epoch)
|
| 340 |
-
|
| 341 |
-
indices = []
|
| 342 |
-
if self.shuffle:
|
| 343 |
-
for bucket in self.buckets:
|
| 344 |
-
indices.append(torch.randperm(len(bucket), generator=g).tolist())
|
| 345 |
-
else:
|
| 346 |
-
for bucket in self.buckets:
|
| 347 |
-
indices.append(list(range(len(bucket))))
|
| 348 |
-
|
| 349 |
-
batches = []
|
| 350 |
-
for i in range(len(self.buckets)):
|
| 351 |
-
bucket = self.buckets[i]
|
| 352 |
-
len_bucket = len(bucket)
|
| 353 |
-
ids_bucket = indices[i]
|
| 354 |
-
num_samples_bucket = self.num_samples_per_bucket[i]
|
| 355 |
-
|
| 356 |
-
# add extra samples to make it evenly divisible
|
| 357 |
-
rem = num_samples_bucket - len_bucket
|
| 358 |
-
ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
|
| 359 |
-
|
| 360 |
-
# subsample
|
| 361 |
-
ids_bucket = ids_bucket[self.rank::self.num_replicas]
|
| 362 |
-
|
| 363 |
-
# batching
|
| 364 |
-
for j in range(len(ids_bucket) // self.batch_size):
|
| 365 |
-
batch = [bucket[idx] for idx in ids_bucket[j*self.batch_size:(j+1)*self.batch_size]]
|
| 366 |
-
batches.append(batch)
|
| 367 |
-
|
| 368 |
-
if self.shuffle:
|
| 369 |
-
batch_ids = torch.randperm(len(batches), generator=g).tolist()
|
| 370 |
-
batches = [batches[i] for i in batch_ids]
|
| 371 |
-
self.batches = batches
|
| 372 |
-
|
| 373 |
-
assert len(self.batches) * self.batch_size == self.num_samples
|
| 374 |
-
return iter(self.batches)
|
| 375 |
-
|
| 376 |
-
def _bisect(self, x, lo=0, hi=None):
|
| 377 |
-
if hi is None:
|
| 378 |
-
hi = len(self.boundaries) - 1
|
| 379 |
-
|
| 380 |
-
if hi > lo:
|
| 381 |
-
mid = (hi + lo) // 2
|
| 382 |
-
if self.boundaries[mid] < x and x <= self.boundaries[mid+1]:
|
| 383 |
-
return mid
|
| 384 |
-
elif x <= self.boundaries[mid]:
|
| 385 |
-
return self._bisect(x, lo, mid)
|
| 386 |
-
else:
|
| 387 |
-
return self._bisect(x, mid + 1, hi)
|
| 388 |
-
else:
|
| 389 |
-
return -1
|
| 390 |
-
|
| 391 |
-
def __len__(self):
|
| 392 |
-
return self.num_samples // self.batch_size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
losses.py
CHANGED
|
@@ -1,8 +1,4 @@
|
|
| 1 |
import torch
|
| 2 |
-
from torch.nn import functional as F
|
| 3 |
-
|
| 4 |
-
import commons
|
| 5 |
-
|
| 6 |
|
| 7 |
def feature_loss(fmap_r, fmap_g):
|
| 8 |
loss = 0
|
|
|
|
| 1 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
def feature_loss(fmap_r, fmap_g):
|
| 4 |
loss = 0
|
mel_processing.py
CHANGED
|
@@ -1,21 +1,9 @@
|
|
| 1 |
-
import math
|
| 2 |
-
import os
|
| 3 |
-
import random
|
| 4 |
import torch
|
| 5 |
-
from torch import nn
|
| 6 |
-
import torch.nn.functional as F
|
| 7 |
import torch.utils.data
|
| 8 |
-
import numpy as np
|
| 9 |
-
import librosa
|
| 10 |
-
import librosa.util as librosa_util
|
| 11 |
-
from librosa.util import normalize, pad_center, tiny
|
| 12 |
-
from scipy.signal import get_window
|
| 13 |
-
from scipy.io.wavfile import read
|
| 14 |
from librosa.filters import mel as librosa_mel_fn
|
| 15 |
|
| 16 |
MAX_WAV_VALUE = 32768.0
|
| 17 |
|
| 18 |
-
|
| 19 |
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
| 20 |
"""
|
| 21 |
PARAMS
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
|
|
|
|
|
|
| 2 |
import torch.utils.data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from librosa.filters import mel as librosa_mel_fn
|
| 4 |
|
| 5 |
MAX_WAV_VALUE = 32768.0
|
| 6 |
|
|
|
|
| 7 |
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
| 8 |
"""
|
| 9 |
PARAMS
|
modules.py
CHANGED
|
@@ -1,7 +1,6 @@
|
|
| 1 |
import copy
|
| 2 |
import math
|
| 3 |
import numpy as np
|
| 4 |
-
import scipy
|
| 5 |
import torch
|
| 6 |
from torch import nn
|
| 7 |
from torch.nn import functional as F
|
|
|
|
| 1 |
import copy
|
| 2 |
import math
|
| 3 |
import numpy as np
|
|
|
|
| 4 |
import torch
|
| 5 |
from torch import nn
|
| 6 |
from torch.nn import functional as F
|
preprocess.py
DELETED
|
@@ -1,25 +0,0 @@
|
|
| 1 |
-
import argparse
|
| 2 |
-
import text
|
| 3 |
-
from utils import load_filepaths_and_text
|
| 4 |
-
|
| 5 |
-
if __name__ == '__main__':
|
| 6 |
-
parser = argparse.ArgumentParser()
|
| 7 |
-
parser.add_argument("--out_extension", default="cleaned")
|
| 8 |
-
parser.add_argument("--text_index", default=1, type=int)
|
| 9 |
-
parser.add_argument("--filelists", nargs="+", default=["filelists/ljs_audio_text_val_filelist.txt", "filelists/ljs_audio_text_test_filelist.txt"])
|
| 10 |
-
parser.add_argument("--text_cleaners", nargs="+", default=["english_cleaners2"])
|
| 11 |
-
|
| 12 |
-
args = parser.parse_args()
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
for filelist in args.filelists:
|
| 16 |
-
print("START:", filelist)
|
| 17 |
-
filepaths_and_text = load_filepaths_and_text(filelist)
|
| 18 |
-
for i in range(len(filepaths_and_text)):
|
| 19 |
-
original_text = filepaths_and_text[i][args.text_index]
|
| 20 |
-
cleaned_text = text._clean_text(original_text, args.text_cleaners)
|
| 21 |
-
filepaths_and_text[i][args.text_index] = cleaned_text
|
| 22 |
-
|
| 23 |
-
new_filelist = filelist + "." + args.out_extension
|
| 24 |
-
with open(new_filelist, "w", encoding="utf-8") as f:
|
| 25 |
-
f.writelines(["|".join(x) + "\n" for x in filepaths_and_text])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|