File size: 6,267 Bytes
99d6fba
 
 
 
 
 
 
 
 
63049fe
99d6fba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3df8e40
 
99d6fba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3df8e40
 
 
99d6fba
 
 
 
 
739b386
99d6fba
63049fe
99d6fba
63049fe
 
 
 
739b386
63049fe
739b386
99d6fba
 
 
 
 
739b386
99d6fba
63049fe
 
 
 
 
 
739b386
 
63049fe
99d6fba
 
 
 
 
 
 
63049fe
 
 
 
99d6fba
 
 
63049fe
 
 
739b386
63049fe
 
 
 
 
739b386
63049fe
 
 
 
 
 
 
 
 
 
 
739b386
 
 
 
63049fe
 
99d6fba
739b386
99d6fba
63049fe
99d6fba
63049fe
99d6fba
63049fe
 
99d6fba
 
 
 
 
63049fe
 
 
 
99d6fba
63049fe
99d6fba
63049fe
99d6fba
63049fe
99d6fba
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import os
import re
import pandas as pd
import gradio as gr
import os
import shutil
import getpass
import gzip
import pickle
import numpy as np

# Attempt to delete content of gradio temp folder
def get_temp_folder_path():
    username = getpass.getuser()
    return os.path.join('C:\\Users', username, 'AppData\\Local\\Temp\\gradio')

def empty_folder(directory_path):
    if not os.path.exists(directory_path):
        #print(f"The directory {directory_path} does not exist. No temporary files from previous app use found to delete.")
        return

    for filename in os.listdir(directory_path):
        file_path = os.path.join(directory_path, filename)
        try:
            if os.path.isfile(file_path) or os.path.islink(file_path):
                os.unlink(file_path)
            elif os.path.isdir(file_path):
                shutil.rmtree(file_path)
        except Exception as e:
            #print(f'Failed to delete {file_path}. Reason: {e}')
            print('')



def get_file_path_end(file_path):
    # First, get the basename of the file (e.g., "example.txt" from "/path/to/example.txt")
    basename = os.path.basename(file_path)
    
    # Then, split the basename and its extension and return only the basename without the extension
    filename_without_extension, _ = os.path.splitext(basename)

    #print(filename_without_extension)
    
    return filename_without_extension

def get_file_path_end_with_ext(file_path):
    match = re.search(r'(.*[\/\\])?(.+)$', file_path)
        
    filename_end = match.group(2) if match else ''

    return filename_end

def detect_file_type(filename):
    """Detect the file type based on its extension."""
    if (filename.endswith('.csv')) | (filename.endswith('.csv.gz')) | (filename.endswith('.zip')):
        return 'csv'
    elif filename.endswith('.xlsx'):
        return 'xlsx'
    elif filename.endswith('.parquet'):
        return 'parquet'
    elif filename.endswith('.pkl.gz'):
        return 'pkl.gz'
    #elif filename.endswith('.gz'):
    #    return 'gz'
    else:
        raise ValueError("Unsupported file type.")

def read_file(filename):
    """Read the file based on its detected type."""
    file_type = detect_file_type(filename)
        
    print("Loading in file")

    if file_type == 'csv':
        file = pd.read_csv(filename, low_memory=False).reset_index().drop(["index", "Unnamed: 0"], axis=1, errors="ignore")
    elif file_type == 'xlsx':
        file = pd.read_excel(filename).reset_index().drop(["index", "Unnamed: 0"], axis=1, errors="ignore")
    elif file_type == 'parquet':
        file = pd.read_parquet(filename).reset_index().drop(["index", "Unnamed: 0"], axis=1, errors="ignore")
    elif file_type == 'pkl.gz':
        with gzip.open(filename, 'rb') as file:
            file = pickle.load(file)
    #elif file_type == ".gz":
    #    with gzip.open(filename, 'rb') as file:
    #        file = pickle.load(file)

    print("File load complete")

    return file

def initial_data_load(in_file, in_bm25_column):
    '''
    When file is loaded, update the column dropdown choices
    '''
    new_choices = []
    concat_choices = []
    index_load = None
    embed_load = np.array([])
    tokenised_load =[]
    out_message = ""
    current_source = ""

    file_list = [string.name for string in in_file]

    #print(file_list)

    data_file_names = [string for string in file_list if "tokenised" not in string.lower() and "npz" not in string.lower() and "search_index" not in string.lower()]

    if not data_file_names:
        out_message = "Please load in at least one csv/Excel/parquet data file."
        print(out_message)
        return gr.Dropdown(choices=concat_choices), gr.Dropdown(choices=concat_choices), pd.DataFrame(), bm25_load, out_message

    data_file_name = data_file_names[0]

    current_source = get_file_path_end_with_ext(data_file_name)
   
    
    df = read_file(data_file_name)

    if "pkl" not in data_file_name:

        new_choices = list(df.columns)

    elif "search_index" in data_file_name:
        # If only the search_index found, need a data file too
        new_choices = []

    else: new_choices = ["page_contents"] + list(df[0].metadata.keys()) #["Documents"]
    #print(new_choices)

    concat_choices.extend(new_choices)

    # Check if there is a search index file already
    index_file_names = [string for string in file_list if "gz" in string.lower()]

    if index_file_names:
        index_file_name = index_file_names[0]
        index_load = read_file(index_file_name)

    embeddings_file_names = [string for string in file_list if "embedding" in string.lower()]

    if embeddings_file_names:
        print("Loading embeddings from file.")
        embed_load = np.load(embeddings_file_names[0])['arr_0']

        # If embedding files have 'super_compress' in the title, they have been multiplied by 100 before save
        if "compress" in embeddings_file_names[0]:
            embed_load /= 100
    else:
        embed_load = np.array([])

    tokenised_file_names = [string for string in file_list if "tokenised" in string.lower()]
    if tokenised_file_names:
        tokenised_load = read_file(tokenised_file_names[0])

    out_message = "Initial data check successful. Next, choose a data column to search in the drop down above, then click 'Load data'"
    print(out_message)
        
    return gr.Dropdown(choices=concat_choices), gr.Dropdown(choices=concat_choices), df, index_load, embed_load, tokenised_load, out_message, current_source

def put_columns_in_join_df(in_file):
    '''
    When file is loaded, update the column dropdown choices
    '''
    new_df = pd.DataFrame()
    #print("in_bm25_column")

    new_choices = []
    concat_choices = []
    
    
    new_df = read_file(in_file.name)
    new_choices = list(new_df.columns)

    #print(new_choices)

    concat_choices.extend(new_choices)

    out_message = "File load successful. Now select a column to join below."    
        
    return gr.Dropdown(choices=concat_choices), new_df, out_message

def dummy_function(gradio_component):
    """
    A dummy function that exists just so that dropdown updates work correctly.
    """
    return None    

def display_info(info_component):
    gr.Info(info_component)