Spaces:
Sleeping
Sleeping
File size: 6,267 Bytes
99d6fba 63049fe 99d6fba 3df8e40 99d6fba 3df8e40 99d6fba 739b386 99d6fba 63049fe 99d6fba 63049fe 739b386 63049fe 739b386 99d6fba 739b386 99d6fba 63049fe 739b386 63049fe 99d6fba 63049fe 99d6fba 63049fe 739b386 63049fe 739b386 63049fe 739b386 63049fe 99d6fba 739b386 99d6fba 63049fe 99d6fba 63049fe 99d6fba 63049fe 99d6fba 63049fe 99d6fba 63049fe 99d6fba 63049fe 99d6fba 63049fe 99d6fba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import os
import re
import pandas as pd
import gradio as gr
import os
import shutil
import getpass
import gzip
import pickle
import numpy as np
# Attempt to delete content of gradio temp folder
def get_temp_folder_path():
username = getpass.getuser()
return os.path.join('C:\\Users', username, 'AppData\\Local\\Temp\\gradio')
def empty_folder(directory_path):
if not os.path.exists(directory_path):
#print(f"The directory {directory_path} does not exist. No temporary files from previous app use found to delete.")
return
for filename in os.listdir(directory_path):
file_path = os.path.join(directory_path, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
#print(f'Failed to delete {file_path}. Reason: {e}')
print('')
def get_file_path_end(file_path):
# First, get the basename of the file (e.g., "example.txt" from "/path/to/example.txt")
basename = os.path.basename(file_path)
# Then, split the basename and its extension and return only the basename without the extension
filename_without_extension, _ = os.path.splitext(basename)
#print(filename_without_extension)
return filename_without_extension
def get_file_path_end_with_ext(file_path):
match = re.search(r'(.*[\/\\])?(.+)$', file_path)
filename_end = match.group(2) if match else ''
return filename_end
def detect_file_type(filename):
"""Detect the file type based on its extension."""
if (filename.endswith('.csv')) | (filename.endswith('.csv.gz')) | (filename.endswith('.zip')):
return 'csv'
elif filename.endswith('.xlsx'):
return 'xlsx'
elif filename.endswith('.parquet'):
return 'parquet'
elif filename.endswith('.pkl.gz'):
return 'pkl.gz'
#elif filename.endswith('.gz'):
# return 'gz'
else:
raise ValueError("Unsupported file type.")
def read_file(filename):
"""Read the file based on its detected type."""
file_type = detect_file_type(filename)
print("Loading in file")
if file_type == 'csv':
file = pd.read_csv(filename, low_memory=False).reset_index().drop(["index", "Unnamed: 0"], axis=1, errors="ignore")
elif file_type == 'xlsx':
file = pd.read_excel(filename).reset_index().drop(["index", "Unnamed: 0"], axis=1, errors="ignore")
elif file_type == 'parquet':
file = pd.read_parquet(filename).reset_index().drop(["index", "Unnamed: 0"], axis=1, errors="ignore")
elif file_type == 'pkl.gz':
with gzip.open(filename, 'rb') as file:
file = pickle.load(file)
#elif file_type == ".gz":
# with gzip.open(filename, 'rb') as file:
# file = pickle.load(file)
print("File load complete")
return file
def initial_data_load(in_file, in_bm25_column):
'''
When file is loaded, update the column dropdown choices
'''
new_choices = []
concat_choices = []
index_load = None
embed_load = np.array([])
tokenised_load =[]
out_message = ""
current_source = ""
file_list = [string.name for string in in_file]
#print(file_list)
data_file_names = [string for string in file_list if "tokenised" not in string.lower() and "npz" not in string.lower() and "search_index" not in string.lower()]
if not data_file_names:
out_message = "Please load in at least one csv/Excel/parquet data file."
print(out_message)
return gr.Dropdown(choices=concat_choices), gr.Dropdown(choices=concat_choices), pd.DataFrame(), bm25_load, out_message
data_file_name = data_file_names[0]
current_source = get_file_path_end_with_ext(data_file_name)
df = read_file(data_file_name)
if "pkl" not in data_file_name:
new_choices = list(df.columns)
elif "search_index" in data_file_name:
# If only the search_index found, need a data file too
new_choices = []
else: new_choices = ["page_contents"] + list(df[0].metadata.keys()) #["Documents"]
#print(new_choices)
concat_choices.extend(new_choices)
# Check if there is a search index file already
index_file_names = [string for string in file_list if "gz" in string.lower()]
if index_file_names:
index_file_name = index_file_names[0]
index_load = read_file(index_file_name)
embeddings_file_names = [string for string in file_list if "embedding" in string.lower()]
if embeddings_file_names:
print("Loading embeddings from file.")
embed_load = np.load(embeddings_file_names[0])['arr_0']
# If embedding files have 'super_compress' in the title, they have been multiplied by 100 before save
if "compress" in embeddings_file_names[0]:
embed_load /= 100
else:
embed_load = np.array([])
tokenised_file_names = [string for string in file_list if "tokenised" in string.lower()]
if tokenised_file_names:
tokenised_load = read_file(tokenised_file_names[0])
out_message = "Initial data check successful. Next, choose a data column to search in the drop down above, then click 'Load data'"
print(out_message)
return gr.Dropdown(choices=concat_choices), gr.Dropdown(choices=concat_choices), df, index_load, embed_load, tokenised_load, out_message, current_source
def put_columns_in_join_df(in_file):
'''
When file is loaded, update the column dropdown choices
'''
new_df = pd.DataFrame()
#print("in_bm25_column")
new_choices = []
concat_choices = []
new_df = read_file(in_file.name)
new_choices = list(new_df.columns)
#print(new_choices)
concat_choices.extend(new_choices)
out_message = "File load successful. Now select a column to join below."
return gr.Dropdown(choices=concat_choices), new_df, out_message
def dummy_function(gradio_component):
"""
A dummy function that exists just so that dropdown updates work correctly.
"""
return None
def display_info(info_component):
gr.Info(info_component)
|