File size: 27,829 Bytes
c1da670
78d71d4
c1da670
 
 
ba838fc
c1da670
a9c2120
 
 
7e5fca9
78d71d4
a9c2120
 
 
 
 
78d71d4
 
 
 
 
 
 
 
 
 
 
 
 
 
a9c2120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78d71d4
a9c2120
 
 
 
 
 
 
 
 
78d71d4
a9c2120
 
78d71d4
a9c2120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78d71d4
a9c2120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78d71d4
a9c2120
 
 
 
78d71d4
a9c2120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78d71d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9c2120
 
 
78d71d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9c2120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba838fc
a9c2120
78d71d4
a9c2120
 
78d71d4
 
 
a9c2120
78d71d4
a9c2120
78d71d4
a9c2120
78d71d4
a9c2120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78d71d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9c2120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78d71d4
 
a9c2120
78d71d4
 
 
a9c2120
78d71d4
 
 
 
 
a9c2120
78d71d4
 
 
 
 
a9c2120
78d71d4
 
a9c2120
 
78d71d4
a9c2120
 
78d71d4
a9c2120
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
import nltk
from typing import TypeVar
nltk.download('names')
nltk.download('stopwords')
nltk.download('wordnet')
nltk.download('punkt')

from search_funcs.fast_bm25 import BM25
from search_funcs.clean_funcs import initial_clean, get_lemma_tokens#, stem_sentence
from nltk import word_tokenize

PandasDataFrame = TypeVar('pd.core.frame.DataFrame')

import gradio as gr
import pandas as pd
import os

from itertools import compress

#from langchain.embeddings import HuggingFaceEmbeddings
#from langchain.vectorstores import FAISS
from transformers import AutoModel

import search_funcs.ingest as ing
import search_funcs.chatfuncs as chatf

# Import Chroma and instantiate a client. The default Chroma client is ephemeral, meaning it will not save to disk.
import chromadb

#collection = client.create_collection(name="my_collection")

def prepare_input_data(in_file, text_column, clean="No", progress=gr.Progress()):

    filename = in_file.name
    # Import data

    df = read_file(filename)

    #df = pd.read_parquet(file_in.name)
    df_list = list(df[text_column].astype(str))
    #df_list = df

    if clean == "Yes":
        df_list_clean = initial_clean(df_list)

        # Save to file if you have cleaned the data
        out_file_name = save_prepared_data(in_file, df_list_clean, df, text_column)

        #corpus = [word_tokenize(doc.lower()) for doc in df_list_clean]
        corpus = [word_tokenize(doc.lower()) for doc in progress.tqdm(df_list_clean, desc = "Tokenising text", unit = "rows")]
        


    else: 
        #corpus = [word_tokenize(doc.lower()) for doc in df_list]
        corpus = [word_tokenize(doc.lower()) for doc in progress.tqdm(df_list, desc = "Tokenising text", unit = "rows")]
        out_file_name = None

    

    print("Finished data clean")

    if len(df_list) >= 20:
        message = "Data loaded"
    else:
        message = "Data loaded. Warning: dataset may be too short to get consistent search results."
    
    return corpus, message, df, out_file_name

def get_file_path_end(file_path):
    # First, get the basename of the file (e.g., "example.txt" from "/path/to/example.txt")
    basename = os.path.basename(file_path)
    
    # Then, split the basename and its extension and return only the basename without the extension
    filename_without_extension, _ = os.path.splitext(basename)

    print(filename_without_extension)
    
    return filename_without_extension

def save_prepared_data(in_file, prepared_text_list, in_df, in_bm25_column):

    # Check if the list and the dataframe have the same length
    if len(prepared_text_list) != len(in_df):
        raise ValueError("The length of 'prepared_text_list' and 'in_df' must match.")
    
    file_end = ".parquet"

    file_name = get_file_path_end(in_file.name) + "_cleaned" + file_end

    prepared_text_df = pd.DataFrame(data={in_bm25_column + "_cleaned":prepared_text_list})

    # Drop original column from input file to reduce file size
    in_df = in_df.drop(in_bm25_column, axis = 1)

    prepared_df = pd.concat([in_df, prepared_text_df], axis = 1)

    if file_end == ".csv":
        prepared_df.to_csv(file_name)
    elif file_end == ".parquet":
        prepared_df.to_parquet(file_name)
    else: file_name = None
    

    return file_name

def prepare_bm25(corpus, k1=1.5, b = 0.75, alpha=-5):
    #bm25.save("saved_df_bm25")
    #bm25 = BM25.load(re.sub(r'\.pkl$', '', file_in.name))

    print("Preparing BM25 corpus")

    global bm25
    bm25 = BM25(corpus, k1=k1, b=b, alpha=alpha)

    message = "Search parameters loaded."

    print(message)

    return message

def convert_query_to_tokens(free_text_query, clean="No"):
    '''
    Split open text query into tokens and then lemmatise to get the core of the word
    '''  

    if clean=="Yes":
        split_query = word_tokenize(free_text_query.lower())
        out_query = get_lemma_tokens(split_query)
        #out_query = stem_sentence(free_text_query)
    else: 
        split_query = word_tokenize(free_text_query.lower())
        out_query = split_query

    return out_query

def bm25_search(free_text_query, in_no_search_results, original_data, text_column, clean = "No", in_join_file = None, in_join_column = "", search_df_join_column = ""):   

    # Prepare query
    if (clean == "Yes") | (text_column.endswith("_cleaned")):
        token_query = convert_query_to_tokens(free_text_query, clean="Yes")
    else:
        token_query = convert_query_to_tokens(free_text_query, clean="No")

    print(token_query)

    # Perform search
    print("Searching")

    results_index, results_text, results_scores = bm25.extract_documents_and_scores(token_query, bm25.corpus, n=in_no_search_results) #bm25.corpus #original_data[text_column]
    if not results_index:
        return "No search results found", None, token_query

    print("Search complete")

    # Prepare results and export
    joined_texts = [' '.join(inner_list) for inner_list in results_text]
    results_df = pd.DataFrame(data={"index": results_index,
                                    "search_text": joined_texts,
                                    "search_score_abs": results_scores})
    results_df['search_score_abs'] = abs(round(results_df['search_score_abs'], 2))
    results_df_out = results_df[['index', 'search_text', 'search_score_abs']].merge(original_data,left_on="index", right_index=True, how="left")#.drop("index", axis=1)
    
    # Join on additional files
    if in_join_file:
        join_filename = in_join_file.name

        # Import data
        join_df = read_file(join_filename)
        join_df[in_join_column] = join_df[in_join_column].astype(str).str.replace("\.0$","", regex=True)
        results_df_out[search_df_join_column] = results_df_out[search_df_join_column].astype(str).str.replace("\.0$","", regex=True)

        results_df_out = results_df_out.merge(join_df,left_on=search_df_join_column, right_on=in_join_column, how="left").drop(in_join_column, axis=1)
    

    # Reorder results by score
    results_df_out = results_df_out.sort_values('search_score_abs', ascending=False)



    # Out file
    results_df_name = "search_result.csv"
    results_df_out.to_csv(results_df_name, index= None)
    results_first_text = results_df_out[text_column].iloc[0]

    print("Returning results")

    return results_first_text, results_df_name, token_query

def detect_file_type(filename):
    """Detect the file type based on its extension."""
    if (filename.endswith('.csv')) | (filename.endswith('.csv.gz')) | (filename.endswith('.zip')):
        return 'csv'
    elif filename.endswith('.xlsx'):
        return 'xlsx'
    elif filename.endswith('.parquet'):
        return 'parquet'
    else:
        raise ValueError("Unsupported file type.")

def read_file(filename):
    """Read the file based on its detected type."""
    file_type = detect_file_type(filename)
    
    if file_type == 'csv':
        return pd.read_csv(filename, low_memory=False).reset_index().drop(["index", "Unnamed: 0"], axis=1, errors="ignore")
    elif file_type == 'xlsx':
        return pd.read_excel(filename).reset_index().drop(["index", "Unnamed: 0"], axis=1, errors="ignore")
    elif file_type == 'parquet':
        return pd.read_parquet(filename).reset_index().drop(["index", "Unnamed: 0"], axis=1, errors="ignore")

def put_columns_in_df(in_file, in_bm25_column):
    '''
    When file is loaded, update the column dropdown choices and change 'clean data' dropdown option to 'no'.
    '''

    new_choices = []
    concat_choices = []
    
    
    df = read_file(in_file.name)
    new_choices = list(df.columns)

    print(new_choices)

    concat_choices.extend(new_choices)     
        
    return gr.Dropdown(choices=concat_choices), gr.Dropdown(value="No", choices = ["Yes", "No"]),\
        gr.Dropdown(choices=concat_choices)

def put_columns_in_join_df(in_file, in_bm25_column):
    '''
    When file is loaded, update the column dropdown choices and change 'clean data' dropdown option to 'no'.
    '''

    print("in_bm25_column")

    new_choices = []
    concat_choices = []
    
    
    df = read_file(in_file.name)
    new_choices = list(df.columns)

    print(new_choices)

    concat_choices.extend(new_choices)     
        
    return gr.Dropdown(choices=concat_choices)

def dummy_function(gradio_component):
    """
    A dummy function that exists just so that dropdown updates work correctly.
    """
    return None    

def display_info(info_component):
    gr.Info(info_component)

embeddings_name = "jinaai/jina-embeddings-v2-small-en"

#embeddings_name = "BAAI/bge-base-en-v1.5"
import chromadb
from typing_extensions import Protocol
from chromadb import Documents, EmbeddingFunction, Embeddings

embeddings_model = AutoModel.from_pretrained(embeddings_name, trust_remote_code=True)

class MyEmbeddingFunction(EmbeddingFunction):
    def __call__(self, input) -> Embeddings:
     

        embeddings = []
        for text in input:
            embeddings.append(embeddings_model.encode(text))

        return embeddings


def load_embeddings(embeddings_name = "jinaai/jina-embeddings-v2-small-en"):
    '''
    Load embeddings model and create a global variable based on it.
    '''

    # Import Chroma and instantiate a client. The default Chroma client is ephemeral, meaning it will not save to disk.
    
    #else: 
    embeddings_func = AutoModel.from_pretrained(embeddings_name, trust_remote_code=True)

    global embeddings

    embeddings = embeddings_func

    return embeddings

embeddings = load_embeddings(embeddings_name)

def docs_to_chroma_save(docs_out, embeddings=embeddings, progress=gr.Progress()):
    '''
    Takes a Langchain document class and saves it into a Chroma sqlite file.
    '''



    print(f"> Total split documents: {len(docs_out)}")

    #print(docs_out)

    page_contents = [doc.page_content for doc in docs_out]
    page_meta = [doc.metadata for doc in docs_out]
    ids_range = range(0,len(page_contents)) 
    ids = [str(element) for element in ids_range]

    embeddings_list = []
    for page in progress.tqdm(page_contents, desc = "Preparing search index", unit = "rows"):
        embeddings_list.append(embeddings.encode(sentences=page, max_length=1024).tolist())


    client = chromadb.PersistentClient(path=".")

    # Create a new Chroma collection to store the supporting evidence. We don't need to specify an embedding fuction, and the default will be used.
    try:
        collection = client.get_collection(name="my_collection")
        client.delete_collection(name="my_collection")
    except: 
        collection = client.create_collection(name="my_collection")
                                          
    collection.add(
    documents = page_contents,
    embeddings = embeddings_list,
    metadatas = page_meta,
    ids = ids)

    #chatf.vectorstore = vectorstore_func

    out_message = "Document processing complete"

    return out_message, collection

def jina_simple_retrieval(new_question_kworded, vectorstore, docs, k_val, out_passages,
                           vec_score_cut_off, vec_weight): # ,vectorstore, embeddings

            from numpy.linalg import norm

            cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b))

            query = embeddings.encode(new_question_kworded)

            # Calculate cosine similarity with each string in the list
            cosine_similarities = [cos_sim(query, string_vector) for string_vector in vectorstore]



            print(cosine_similarities)



            #vectorstore=globals()["vectorstore"]
            #embeddings=globals()["embeddings"]
            doc_df = pd.DataFrame()


            docs = vectorstore.similarity_search_with_score(new_question_kworded, k=k_val)

            print("Docs from similarity search:")
            print(docs)

            # Keep only documents with a certain score
            docs_len = [len(x[0].page_content) for x in docs]
            docs_scores = [x[1] for x in docs]

            # Only keep sources that are sufficiently relevant (i.e. similarity search score below threshold below)
            score_more_limit = pd.Series(docs_scores) < vec_score_cut_off
            docs_keep = list(compress(docs, score_more_limit))

            if not docs_keep:
                return [], pd.DataFrame(), []

            # Only keep sources that are at least 100 characters long
            length_more_limit = pd.Series(docs_len) >= 100
            docs_keep = list(compress(docs_keep, length_more_limit))

            if not docs_keep:
                return [], pd.DataFrame(), []

            docs_keep_as_doc = [x[0] for x in docs_keep]
            docs_keep_length = len(docs_keep_as_doc)


                
            if docs_keep_length == 1:

                content=[]
                meta_url=[]
                score=[]
                
                for item in docs_keep:
                    content.append(item[0].page_content)
                    meta_url.append(item[0].metadata['source'])
                    score.append(item[1])       

                # Create df from 'winning' passages

                doc_df = pd.DataFrame(list(zip(content, meta_url, score)),
                columns =['page_content', 'meta_url', 'score'])

                docs_content = doc_df['page_content'].astype(str)
                docs_url = doc_df['meta_url']

                return docs_keep_as_doc, docs_content, docs_url
            
            # Check for if more docs are removed than the desired output
            if out_passages > docs_keep_length: 
                out_passages = docs_keep_length
                k_val = docs_keep_length
                     
            vec_rank = [*range(1, docs_keep_length+1)]
            vec_score = [(docs_keep_length/x)*vec_weight for x in vec_rank]

            ## Calculate final score based on three ranking methods
            final_score = [a for a in zip(vec_score)]
            final_rank = [sorted(final_score, reverse=True).index(x)+1 for x in final_score]
            # Force final_rank to increment by 1 each time
            final_rank = list(pd.Series(final_rank).rank(method='first'))

            #print("final rank: " + str(final_rank))
            #print("out_passages: " + str(out_passages))

            best_rank_index_pos = []

            for x in range(1,out_passages+1):
                try:
                    best_rank_index_pos.append(final_rank.index(x))
                except IndexError: # catch the error
                    pass

            # Adjust best_rank_index_pos to 

            best_rank_pos_series = pd.Series(best_rank_index_pos)


            docs_keep_out = [docs_keep[i] for i in best_rank_index_pos]
        
            # Keep only 'best' options
            docs_keep_as_doc = [x[0] for x in docs_keep_out]
                               
            # Make df of best options
            doc_df = create_doc_df(docs_keep_out)

            return docs_keep_as_doc, doc_df, docs_keep_out

def chroma_retrieval(new_question_kworded, vectorstore, docs, k_val, out_passages,
                           vec_score_cut_off, vec_weight): # ,vectorstore, embeddings

            query = embeddings.encode(new_question_kworded).tolist()

            docs = vectorstore.query(
            query_embeddings=query,
            n_results= 9999 # No practical limit on number of responses returned
            #where={"metadata_field": "is_equal_to_this"},
            #where_document={"$contains":"search_string"}
            )

            # Calculate cosine similarity with each string in the list
            #cosine_similarities = [cos_sim(query, string_vector) for string_vector in vectorstore]

            #print(docs)

            #vectorstore=globals()["vectorstore"]
            #embeddings=globals()["embeddings"]
            df = pd.DataFrame(data={'ids': docs['ids'][0],
                                    'documents': docs['documents'][0],
                                    'metadatas':docs['metadatas'][0],
                                    'distances':docs['distances'][0]#,                                    
                                    #'embeddings': docs['embeddings']
                                    })
            
            def create_docs_keep_from_df(df):
                dict_out = {'ids' : [df['ids']],
                            'documents': [df['documents']],
                            'metadatas': [df['metadatas']],
                            'distances': [df['distances']],
                            'embeddings': None
                            }
                return dict_out
                
            # Prepare the DataFrame by transposing
            df_docs = df#.apply(lambda x: x.explode()).reset_index(drop=True)

            #print(df_docs)


            # Keep only documents with a certain score
            
            docs_scores = df_docs["distances"] #.astype(float)

            #print(docs_scores)

            # Only keep sources that are sufficiently relevant (i.e. similarity search score below threshold below)
            score_more_limit = df_docs.loc[docs_scores < vec_score_cut_off, :]
            docs_keep = create_docs_keep_from_df(score_more_limit) #list(compress(docs, score_more_limit))

            #print(docs_keep)

            if not docs_keep:
                return 'No result found!', ""

            # Only keep sources that are at least 100 characters long
            docs_len = score_more_limit["documents"].str.len() >= 100
            length_more_limit = score_more_limit.loc[docs_len, :] #pd.Series(docs_len) >= 100
            docs_keep = create_docs_keep_from_df(length_more_limit) #list(compress(docs_keep, length_more_limit))

            #print(docs_keep)

            print(length_more_limit)

            if not docs_keep:
                return 'No result found!', ""
            
            results_df_name = "semantic_search_result.csv"
            length_more_limit.to_csv(results_df_name, index= None)
            results_first_text = length_more_limit["documents"][0]

            
            return results_first_text, results_df_name

# ## Gradio app - BM25 search
block = gr.Blocks(theme = gr.themes.Base())

with block:

    ingest_text = gr.State()
    ingest_metadata = gr.State()
    ingest_docs = gr.State()
    vectorstore_state = gr.State() # globals()["vectorstore"]
    embeddings_state = gr.State() # globals()["embeddings"]

    k_val = gr.State(100)
    out_passages = gr.State(100)
    vec_score_cut_off = gr.State(100)
    vec_weight = gr.State(1)

    docs_keep_as_doc_state = gr.State()
    doc_df_state = gr.State()
    docs_keep_out_state = gr.State()

    corpus_state = gr.State()
    data_state = gr.State(pd.DataFrame())

    in_k1_info = gr.State("""k1: Constant used for influencing the term frequency saturation. After saturation is reached, additional
presence for the term adds a significantly less additional score. According to [1]_, experiments suggest
that 1.2 < k1 < 2 yields reasonably good results, although the optimal value depends on factors such as
the type of documents or queries. Information taken from https://github.com/Inspirateur/Fast-BM25""")
    in_b_info = gr.State("""b: Constant used for influencing the effects of different document lengths relative to average document length.
When b is bigger, lengthier documents (compared to average) have more impact on its effect. According to
[1]_, experiments suggest that 0.5 < b < 0.8 yields reasonably good results, although the optimal value
depends on factors such as the type of documents or queries. Information taken from https://github.com/Inspirateur/Fast-BM25""")
    in_alpha_info = gr.State("""alpha: IDF cutoff, terms with a lower idf score than alpha will be dropped. A higher alpha will lower the accuracy of BM25 but increase performance. Information taken from https://github.com/Inspirateur/Fast-BM25""")
    in_no_search_info = gr.State("""Search results number: Maximum number of search results that will be returned. Bear in mind that if the alpha value is greater than the minimum, common words will be removed from the dataset, and so the number of search results returned may be lower than this value.""")
    in_clean_info = gr.State("""Clean text: Clean the input text and search query. The function will try to remove email components and tags, and then will 'stem' the words. I.e. it will remove the endings of words (e.g. smashed becomes smash) so that the search engine is looking for the common 'core' of words between the query and dataset.""")

    gr.Markdown(
    """
    # Fast text search
    Enter a text query below to search through a text data column and find relevant terms. It will only find terms containing the exact text you enter. Your data should contain at least 20 entries for the search to consistently return results.
    """)

    
    with gr.Tab(label="Search your data"):
        with gr.Row():
            current_source = gr.Textbox(label="Current data source(s)", value="None")

        with gr.Accordion(label = "Load in data", open=True):
            in_bm25_file = gr.File(label="Upload your search data here")
            with gr.Row():
                in_bm25_column = gr.Dropdown(label="Enter the name of the text column in the data file to search")
                
                load_bm25_data_button = gr.Button(value="Load data")
                 

            with gr.Row():
                load_finished_message = gr.Textbox(label="Load progress", scale = 2)


        with gr.Accordion(label = "Search data", open=True):
            with gr.Row():
                in_query = gr.Textbox(label="Enter your search term")
                mod_query = gr.Textbox(label="Cleaned search term (the terms that are passed to the search engine)")
                             
            search_button = gr.Button(value="Search text")

            with gr.Row():
                output_single_text = gr.Textbox(label="Top result")
                output_file = gr.File(label="File output")

    
    with gr.Tab("Fuzzy/semantic search"):
        with gr.Accordion("CSV/Excel file", open = True):
            in_semantic_file = gr.File(label="Upload data file for semantic search")
            in_semantic_column = gr.Dropdown(label="Enter the name of the text column in the data file to search")
            load_semantic_data_button = gr.Button(value="Load in CSV/Excel file", variant="secondary", scale=0)
        
        ingest_embed_out = gr.Textbox(label="File/web page preparation progress")
        semantic_query = gr.Textbox(label="Enter semantic search query here")
        semantic_submit = gr.Button(value="Start semantic search", variant="secondary", scale = 1)

        with gr.Row():
            semantic_output_single_text = gr.Textbox(label="Top result")
            semantic_output_file = gr.File(label="File output")
            

    with gr.Tab(label="Advanced options"):
        with gr.Accordion(label="Data load / save options", open = False):
            #with gr.Row():
            in_clean_data = gr.Dropdown(label = "Clean text during load (remove tags, stem words). This will take some time!", value="No", choices=["Yes", "No"])
            #save_clean_data_button = gr.Button(value = "Save loaded data to file", scale = 1)
        with gr.Accordion(label="Search options", open = False):
            with gr.Row():
                in_k1 = gr.Slider(label = "k1 value", value = 1.5, minimum = 0.1, maximum = 5, step = 0.1, scale = 3)
                in_k1_button = gr.Button(value = "k1 value info", scale = 1)
            with gr.Row():
                in_b = gr.Slider(label = "b value", value = 0.75, minimum = 0.1, maximum = 5, step = 0.05, scale = 3)
                in_b_button = gr.Button(value = "b value info", scale = 1)
            with gr.Row():
                in_alpha = gr.Slider(label = "alpha value / IDF cutoff", value = -5, minimum = -5, maximum = 10, step = 1, scale = 3)
                in_alpha_button = gr.Button(value = "alpha value info", scale = 1)
            with gr.Row():
                in_no_search_results = gr.Slider(label="Maximum number of search results to return", value = 100000, minimum=10, maximum=100000, step=10, scale = 3)
                in_no_search_results_button = gr.Button(value = "Search results number info", scale = 1)
            with gr.Row():
                in_search_param_button = gr.Button(value="Load search parameters (Need to click this if you changed anything above)")
        with gr.Accordion(label = "Join on additional dataframes to results", open = False):
            in_join_file = gr.File(label="Upload your data to join here")
            in_join_column = gr.Dropdown(label="Column to join in new data frame")
            search_df_join_column = gr.Dropdown(label="Column to join in search data frame")

        in_search_param_button.click(fn=prepare_bm25, inputs=[corpus_state, in_k1, in_b, in_alpha], outputs=[load_finished_message])
                      
    # ---
    in_k1_button.click(display_info, inputs=in_k1_info)
    in_b_button.click(display_info, inputs=in_b_info)
    in_alpha_button.click(display_info, inputs=in_alpha_info)
    in_no_search_results_button.click(display_info, inputs=in_no_search_info)
    

    # Update dropdowns upon initial file load
    in_bm25_file.upload(put_columns_in_df, inputs=[in_bm25_file, in_bm25_column], outputs=[in_bm25_column, in_clean_data, search_df_join_column])
    in_join_file.upload(put_columns_in_join_df, inputs=[in_join_file, in_join_column], outputs=[in_join_column])
 
    # Load in BM25 data
    load_bm25_data_button.click(fn=prepare_input_data, inputs=[in_bm25_file, in_bm25_column, in_clean_data], outputs=[corpus_state, load_finished_message, data_state, output_file]).\
    then(fn=prepare_bm25, inputs=[corpus_state, in_k1, in_b, in_alpha], outputs=[load_finished_message]).\
    then(fn=put_columns_in_df, inputs=[in_bm25_file, in_bm25_column], outputs=[in_bm25_column, in_clean_data, search_df_join_column])
   
    # BM25 search functions on click or enter
    search_button.click(fn=bm25_search, inputs=[in_query, in_no_search_results, data_state, in_bm25_column, in_clean_data, in_join_file, in_join_column, search_df_join_column], outputs=[output_single_text, output_file, mod_query], api_name="search")
    in_query.submit(fn=bm25_search, inputs=[in_query, in_no_search_results, data_state, in_bm25_column, in_clean_data, in_join_file, in_join_column, search_df_join_column], outputs=[output_single_text, output_file, mod_query])
    
    # Load in a csv/excel file for semantic search
    in_semantic_file.upload(put_columns_in_df, inputs=[in_semantic_file, in_semantic_column], outputs=[in_semantic_column, in_clean_data, search_df_join_column])
    load_semantic_data_button.click(ing.parse_csv_or_excel, inputs=[in_semantic_file, in_semantic_column], outputs=[ingest_text, current_source]).\
             then(ing.csv_excel_text_to_docs, inputs=[ingest_text, in_semantic_column], outputs=[ingest_docs]).\
             then(docs_to_chroma_save, inputs=[ingest_docs], outputs=[ingest_embed_out, vectorstore_state])
    
    # Semantic search query
    semantic_submit.click(chroma_retrieval, inputs=[semantic_query, vectorstore_state, ingest_docs, k_val,out_passages, vec_score_cut_off, vec_weight], outputs=[semantic_output_single_text, semantic_output_file], api_name="semantic")
    
    # Dummy functions just to get dropdowns to work correctly with Gradio 3.50
    in_bm25_column.change(dummy_function, in_bm25_column, None)
    search_df_join_column.change(dummy_function, search_df_join_column, None)
    in_join_column.change(dummy_function, in_join_column, None)
    in_semantic_column.change(dummy_function, in_join_column, None)

block.queue().launch(debug=True)