File size: 15,199 Bytes
a9c2120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
from search_funcs.fast_bm25 import BM25
from search_funcs.clean_funcs import initial_clean, get_lemma_tokens#, stem_sentence
from nltk import word_tokenize

import gradio as gr
import pandas as pd
import os

def prepare_input_data(in_file, text_column, clean="No", progress=gr.Progress()):

    filename = in_file.name
    # Import data

    df = read_file(filename)

    #df = pd.read_parquet(file_in.name)
    df_list = list(df[text_column].astype(str))
    #df_list = df

    if clean == "Yes":
        df_list_clean = initial_clean(df_list)

        # Save to file if you have cleaned the data
        out_file_name = save_prepared_data(in_file, df_list_clean, df, text_column)

        #corpus = [word_tokenize(doc.lower()) for doc in df_list_clean]
        corpus = [word_tokenize(doc.lower()) for doc in progress.tqdm(df_list_clean, desc = "Tokenising text", unit = "rows")]
        


    else: 
        #corpus = [word_tokenize(doc.lower()) for doc in df_list]
        corpus = [word_tokenize(doc.lower()) for doc in progress.tqdm(df_list, desc = "Tokenising text", unit = "rows")]
        out_file_name = None

    

    print("Finished data clean")

    if len(df_list) >= 20:
        message = "Data loaded"
    else:
        message = "Data loaded. Warning: dataset may be too short to get consistent search results."
    
    return corpus, message, df, out_file_name

def get_file_path_end(file_path):
    # First, get the basename of the file (e.g., "example.txt" from "/path/to/example.txt")
    basename = os.path.basename(file_path)
    
    # Then, split the basename and its extension and return only the basename without the extension
    filename_without_extension, _ = os.path.splitext(basename)

    print(filename_without_extension)
    
    return filename_without_extension

def save_prepared_data(in_file, prepared_text_list, in_df, in_column):

    # Check if the list and the dataframe have the same length
    if len(prepared_text_list) != len(in_df):
        raise ValueError("The length of 'prepared_text_list' and 'in_df' must match.")
    
    file_end = ".parquet"

    file_name = get_file_path_end(in_file.name) + "_cleaned" + file_end

    prepared_text_df = pd.DataFrame(data={in_column + "_cleaned":prepared_text_list})

    # Drop original column from input file to reduce file size
    in_df = in_df.drop(in_column, axis = 1)

    prepared_df = pd.concat([in_df, prepared_text_df], axis = 1)

    if file_end == ".csv":
        prepared_df.to_csv(file_name)
    elif file_end == ".parquet":
        prepared_df.to_parquet(file_name)
    else: file_name = None
    

    return file_name

def prepare_bm25(corpus, k1=1.5, b = 0.75, alpha=-5):
    #bm25.save("saved_df_bm25")
    #bm25 = BM25.load(re.sub(r'\.pkl$', '', file_in.name))

    print("Preparing BM25 corpus")

    global bm25
    bm25 = BM25(corpus, k1=k1, b=b, alpha=alpha)

    message = "Search parameters loaded."

    print(message)

    return message

def convert_query_to_tokens(free_text_query, clean="No"):
    '''
    Split open text query into tokens and then lemmatise to get the core of the word
    '''  

    if clean=="Yes":
        split_query = word_tokenize(free_text_query.lower())
        out_query = get_lemma_tokens(split_query)
        #out_query = stem_sentence(free_text_query)
    else: 
        split_query = word_tokenize(free_text_query.lower())
        out_query = split_query

    return out_query

def bm25_search(free_text_query, in_no_search_results, original_data, text_column, clean = "No", in_join_file = None, in_join_column = "", search_df_join_column = ""):   

    # Prepare query
    if (clean == "Yes") | (text_column.endswith("_cleaned")):
        token_query = convert_query_to_tokens(free_text_query, clean="Yes")
    else:
        token_query = convert_query_to_tokens(free_text_query, clean="No")

    print(token_query)

    # Perform search
    print("Searching")

    results_index, results_text, results_scores = bm25.extract_documents_and_scores(token_query, bm25.corpus, n=in_no_search_results) #bm25.corpus #original_data[text_column]
    if not results_index:
        return "No search results found", None, token_query

    print("Search complete")

    # Prepare results and export
    joined_texts = [' '.join(inner_list) for inner_list in results_text]
    results_df = pd.DataFrame(data={"index": results_index,
                                    "search_text": joined_texts,
                                    "search_score_abs": results_scores})
    results_df['search_score_abs'] = abs(round(results_df['search_score_abs'], 2))
    results_df_out = results_df[['index', 'search_text', 'search_score_abs']].merge(original_data,left_on="index", right_index=True, how="left")#.drop("index", axis=1)
    
    # Join on additional files
    if in_join_file:
        join_filename = in_join_file.name

        # Import data
        join_df = read_file(join_filename)
        join_df[in_join_column] = join_df[in_join_column].astype(str).str.replace("\.0$","", regex=True)
        results_df_out[search_df_join_column] = results_df_out[search_df_join_column].astype(str).str.replace("\.0$","", regex=True)

        results_df_out = results_df_out.merge(join_df,left_on=search_df_join_column, right_on=in_join_column, how="left").drop(in_join_column, axis=1)
    

    # Reorder results by score
    results_df_out = results_df_out.sort_values('search_score_abs', ascending=False)



    # Out file
    results_df_name = "search_result.csv"
    results_df_out.to_csv(results_df_name, index= None)
    results_first_text = results_df_out[text_column].iloc[0]

    print("Returning results")

    return results_first_text, results_df_name, token_query

def detect_file_type(filename):
    """Detect the file type based on its extension."""
    if (filename.endswith('.csv')) | (filename.endswith('.csv.gz')) | (filename.endswith('.zip')):
        return 'csv'
    elif filename.endswith('.xlsx'):
        return 'xlsx'
    elif filename.endswith('.parquet'):
        return 'parquet'
    else:
        raise ValueError("Unsupported file type.")

def read_file(filename):
    """Read the file based on its detected type."""
    file_type = detect_file_type(filename)
    
    if file_type == 'csv':
        return pd.read_csv(filename, low_memory=False).reset_index().drop(["index", "Unnamed: 0"], axis=1, errors="ignore")
    elif file_type == 'xlsx':
        return pd.read_excel(filename).reset_index().drop(["index", "Unnamed: 0"], axis=1, errors="ignore")
    elif file_type == 'parquet':
        return pd.read_parquet(filename).reset_index().drop(["index", "Unnamed: 0"], axis=1, errors="ignore")

def put_columns_in_df(in_file, in_column):
    '''
    When file is loaded, update the column dropdown choices and change 'clean data' dropdown option to 'no'.
    '''

    new_choices = []
    concat_choices = []
    
    
    df = read_file(in_file.name)
    new_choices = list(df.columns)

    print(new_choices)

    concat_choices.extend(new_choices)     
        
    return gr.Dropdown(choices=concat_choices), gr.Dropdown(value="No", choices = ["Yes", "No"]),\
        gr.Dropdown(choices=concat_choices)

def put_columns_in_join_df(in_file, in_column):
    '''
    When file is loaded, update the column dropdown choices and change 'clean data' dropdown option to 'no'.
    '''

    print("in_column")

    new_choices = []
    concat_choices = []
    
    
    df = read_file(in_file.name)
    new_choices = list(df.columns)

    print(new_choices)

    concat_choices.extend(new_choices)     
        
    return gr.Dropdown(choices=concat_choices)

def dummy_function(gradio_component):
    """
    A dummy function that exists just so that dropdown updates work correctly.
    """
    return None    

def display_info(info_component):
    gr.Info(info_component)
# %%
# ## Gradio app - BM25 search
block = gr.Blocks(theme = gr.themes.Base())

with block:  

    corpus_state = gr.State()
    data_state = gr.State(pd.DataFrame())

    in_k1_info = gr.State("""k1: Constant used for influencing the term frequency saturation. After saturation is reached, additional
presence for the term adds a significantly less additional score. According to [1]_, experiments suggest
that 1.2 < k1 < 2 yields reasonably good results, although the optimal value depends on factors such as
the type of documents or queries. Information taken from https://github.com/Inspirateur/Fast-BM25""")
    in_b_info = gr.State("""b: Constant used for influencing the effects of different document lengths relative to average document length.
When b is bigger, lengthier documents (compared to average) have more impact on its effect. According to
[1]_, experiments suggest that 0.5 < b < 0.8 yields reasonably good results, although the optimal value
depends on factors such as the type of documents or queries. Information taken from https://github.com/Inspirateur/Fast-BM25""")
    in_alpha_info = gr.State("""alpha: IDF cutoff, terms with a lower idf score than alpha will be dropped. A higher alpha will lower the accuracy of BM25 but increase performance. Information taken from https://github.com/Inspirateur/Fast-BM25""")
    in_no_search_info = gr.State("""Search results number: Maximum number of search results that will be returned. Bear in mind that if the alpha value is greater than the minimum, common words will be removed from the dataset, and so the number of search results returned may be lower than this value.""")
    in_clean_info = gr.State("""Clean text: Clean the input text and search query. The function will try to remove email components and tags, and then will 'stem' the words. I.e. it will remove the endings of words (e.g. smashed becomes smash) so that the search engine is looking for the common 'core' of words between the query and dataset.""")

    gr.Markdown(
    """
    # Fast text search
    Enter a text query below to search through a text data column and find relevant entries. Your data should contain at least 20 entries for the search to return results.
    """)
    
    with gr.Tab(label="Search your data"):
        with gr.Accordion(label = "Load in data", open=True):
            in_corpus = gr.File(label="Upload your search data here")
            with gr.Row():
                in_column = gr.Dropdown(label="Enter the name of the text column in the data file to search")
                
                load_data_button = gr.Button(value="Load data")
                 

            with gr.Row():
                load_finished_message = gr.Textbox(label="Load progress", scale = 2)


        with gr.Accordion(label = "Search data", open=True):
            with gr.Row():
                in_query = gr.Textbox(label="Enter your search term")
                mod_query = gr.Textbox(label="Cleaned search term (the terms that are passed to the search engine)")
                             
            search_button = gr.Button(value="Search text")

            with gr.Row():
                output_single_text = gr.Textbox(label="Top result")
                output_file = gr.File(label="File output")
            

    with gr.Tab(label="Advanced options"):
        with gr.Accordion(label="Data load / save options", open = False):
            #with gr.Row():
            in_clean_data = gr.Dropdown(label = "Clean text during load (remove tags, stem words). This will take some time!", value="No", choices=["Yes", "No"])
            #save_clean_data_button = gr.Button(value = "Save loaded data to file", scale = 1)
        with gr.Accordion(label="Search options", open = False):
            with gr.Row():
                in_k1 = gr.Slider(label = "k1 value", value = 1.5, minimum = 0.1, maximum = 5, step = 0.1, scale = 3)
                in_k1_button = gr.Button(value = "k1 value info", scale = 1)
            with gr.Row():
                in_b = gr.Slider(label = "b value", value = 0.75, minimum = 0.1, maximum = 5, step = 0.05, scale = 3)
                in_b_button = gr.Button(value = "b value info", scale = 1)
            with gr.Row():
                in_alpha = gr.Slider(label = "alpha value / IDF cutoff", value = -5, minimum = -5, maximum = 10, step = 1, scale = 3)
                in_alpha_button = gr.Button(value = "alpha value info", scale = 1)
            with gr.Row():
                in_no_search_results = gr.Slider(label="Maximum number of search results to return", value = 100000, minimum=10, maximum=100000, step=10, scale = 3)
                in_no_search_results_button = gr.Button(value = "Search results number info", scale = 1)
            with gr.Row():
                in_search_param_button = gr.Button(value="Load search parameters (Need to click this if you changed anything above)")
        with gr.Accordion(label = "Join on additional dataframes to results", open = False):
            in_join_file = gr.File(label="Upload your data to join here")
            in_join_column = gr.Dropdown(label="Column to join in new data frame")
            search_df_join_column = gr.Dropdown(label="Column to join in search data frame")

        in_search_param_button.click(fn=prepare_bm25, inputs=[corpus_state, in_k1, in_b, in_alpha], outputs=[load_finished_message])
                      
    # ---
    in_k1_button.click(display_info, inputs=in_k1_info)
    in_b_button.click(display_info, inputs=in_b_info)
    in_alpha_button.click(display_info, inputs=in_alpha_info)
    in_no_search_results_button.click(display_info, inputs=in_no_search_info)
    

    in_corpus.upload(put_columns_in_df, inputs=[in_corpus, in_column], outputs=[in_column, in_clean_data, search_df_join_column])
    in_join_file.upload(put_columns_in_join_df, inputs=[in_join_file, in_join_column], outputs=[in_join_column])

    # Load in the data
    load_data_button.click(fn=prepare_input_data, inputs=[in_corpus, in_column, in_clean_data], outputs=[corpus_state, load_finished_message, data_state, output_file]).\
    then(fn=prepare_bm25, inputs=[corpus_state, in_k1, in_b, in_alpha], outputs=[load_finished_message]).\
    then(fn=put_columns_in_df, inputs=[in_corpus, in_column], outputs=[in_column, in_clean_data, search_df_join_column])

    #save_clean_data_button.click(fn=save_prepared_data, inputs=[in_corpus, corpus_state, data_state, in_column], outputs=[output_file])   
    

    # Search functions on click or enter
    search_button.click(fn=bm25_search, inputs=[in_query, in_no_search_results, data_state, in_column, in_clean_data, in_join_file, in_join_column, search_df_join_column],
                        outputs=[output_single_text, output_file, mod_query], api_name="search")
    
    in_query.submit(fn=bm25_search, inputs=[in_query, in_no_search_results, data_state, in_column, in_clean_data, in_join_file, in_join_column, search_df_join_column],
                        outputs=[output_single_text, output_file, mod_query])
    
    # Dummy functions just to get dropdowns to work correctly with Gradio 3.50
    in_column.change(dummy_function, in_column, None)
    search_df_join_column.change(dummy_function, search_df_join_column, None)
    in_join_column.change(dummy_function, in_join_column, None)

block.queue().launch(debug=True)