Spaces:
Sleeping
Sleeping
File size: 11,366 Bytes
a9c2120 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
# ## Some functions to clean text
# ### Some other suggested cleaning approaches
#
# #### From here: https://shravan-kuchkula.github.io/topic-modeling/#interactive-plot-showing-results-of-k-means-clustering-lda-topic-modeling-and-sentiment-analysis
#
# - remove_hyphens
# - tokenize_text
# - remove_special_characters
# - convert to lower case
# - remove stopwords
# - lemmatize the token
# - remove short tokens
# - keep only words in wordnet
# - I ADDED ON - creating custom stopwords list
# +
# Create a custom stop words list
import nltk
import re
import string
from nltk.stem import WordNetLemmatizer
from nltk.stem import PorterStemmer
from nltk.corpus import wordnet as wn
from nltk import word_tokenize
# Add calendar months onto stop words
import calendar
from tqdm import tqdm
import gradio as gr
stemmer = PorterStemmer()
nltk.download('stopwords')
nltk.download('wordnet')
#nltk.download('words')
#nltk.download('names')
#nltk.corpus.words.words('en')
#from sklearn.feature_extraction import text
# Adding common names to stopwords
all_names = [x.lower() for x in list(nltk.corpus.names.words())]
# Adding custom words to the stopwords
custom_words = []
my_stop_words = custom_words
cal_month = (list(calendar.month_name))
cal_month = [x.lower() for x in cal_month]
# Remove blanks
cal_month = [i for i in cal_month if i]
#print(cal_month)
custom_words.extend(cal_month)
#my_stop_words = frozenset(text.ENGLISH_STOP_WORDS.union(custom_words).union(all_names))
#custom_stopwords = my_stop_words
# -
# #### Some of my cleaning functions
'''
# +
# Remove all html elements from the text. Inspired by this: https://stackoverflow.com/questions/9662346/python-code-to-remove-html-tags-from-a-string
def remove_email_start(text):
cleanr = re.compile('.*importance:|.*subject:')
cleantext = re.sub(cleanr, '', text)
return cleantext
def remove_email_end(text):
cleanr = re.compile('kind regards.*|many thanks.*|sincerely.*')
cleantext = re.sub(cleanr, '', text)
return cleantext
def cleanhtml(text):
cleanr = re.compile('<.*?>|&([a-z0-9]+|#[0-9]{1,6}|#x[0-9a-f]{1,6});|\xa0')
cleantext = re.sub(cleanr, '', text)
return cleantext
## The above doesn't work when there is no > at the end of the string to match the initial <. Trying this: <[^>]+> but needs work: https://stackoverflow.com/questions/2013124/regex-matching-up-to-the-first-occurrence-of-a-character
# Remove all email addresses and numbers from the text
def cleanemail(text):
cleanr = re.compile('\S*@\S*\s?|\xa0')
cleantext = re.sub(cleanr, '', text)
return cleantext
def cleannum(text):
cleanr = re.compile(r'[0-9]+')
cleantext = re.sub(cleanr, '', text)
return cleantext
def cleanpostcode(text):
cleanr = re.compile(r'(\b(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]? ?[0-9][A-Z]{2})|((GIR ?0A{2})\b$)|(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]? ?[0-9]{1}?)$)|(\b(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]?)\b$)')
cleantext = re.sub(cleanr, '', text)
return cleantext
def cleanwarning(text):
cleanr = re.compile('caution: this email originated from outside of the organization. do not click links or open attachments unless you recognize the sender and know the content is safe.')
cleantext = re.sub(cleanr, '', text)
return cleantext
# -
def initial_clean(texts):
clean_texts = []
for text in texts:
text = remove_email_start(text)
text = remove_email_end(text)
text = cleanpostcode(text)
text = remove_hyphens(text)
text = cleanhtml(text)
text = cleanemail(text)
#text = cleannum(text)
clean_texts.append(text)
return clean_texts
'''
# Pre-compiling the regular expressions for efficiency
email_start_pattern = re.compile('.*importance:|.*subject:')
email_end_pattern = re.compile('kind regards.*|many thanks.*|sincerely.*')
html_pattern = re.compile('<.*?>|&([a-z0-9]+|#[0-9]{1,6}|#x[0-9a-f]{1,6});|\xa0')
email_pattern = re.compile('\S*@\S*\s?')
num_pattern = re.compile(r'[0-9]+')
postcode_pattern = re.compile(r'(\b(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]? ?[0-9][A-Z]{2})|((GIR ?0A{2})\b$)|(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]? ?[0-9]{1}?)$)|(\b(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]?)\b$)')
warning_pattern = re.compile('caution: this email originated from outside of the organization. do not click links or open attachments unless you recognize the sender and know the content is safe.')
nbsp_pattern = re.compile(r' ')
def stem_sentence(sentence):
words = sentence.split()
stemmed_words = [stemmer.stem(word).lower().rstrip("'") for word in words]
return stemmed_words
def stem_sentences(sentences, progress=gr.Progress()):
"""Stem each sentence in a list of sentences."""
stemmed_sentences = [stem_sentence(sentence) for sentence in progress.tqdm(sentences)]
return stemmed_sentences
def get_lemma_text(text):
# Tokenize the input string into words
tokens = word_tokenize(text)
lemmas = []
for word in tokens:
if len(word) > 3:
lemma = wn.morphy(word)
else:
lemma = None
if lemma is None:
lemmas.append(word)
else:
lemmas.append(lemma)
return lemmas
def get_lemma_tokens(tokens):
# Tokenize the input string into words
lemmas = []
for word in tokens:
if len(word) > 3:
lemma = wn.morphy(word)
else:
lemma = None
if lemma is None:
lemmas.append(word)
else:
lemmas.append(lemma)
return lemmas
def initial_clean(texts , progress=gr.Progress()):
clean_texts = []
i = 1
#progress(0, desc="Cleaning texts")
for text in progress.tqdm(texts, desc = "Cleaning data", unit = "rows"):
#print("Cleaning row: ", i)
text = re.sub(email_start_pattern, '', text)
text = re.sub(email_end_pattern, '', text)
text = re.sub(postcode_pattern, '', text)
text = remove_hyphens(text)
text = re.sub(html_pattern, '', text)
text = re.sub(email_pattern, '', text)
text = re.sub(nbsp_pattern, '', text)
#text = re.sub(warning_pattern, '', text)
#text = stem_sentence(text)
text = get_lemma_text(text)
text = ' '.join(text)
# Uncomment the next line if you want to remove numbers as well
# text = re.sub(num_pattern, '', text)
clean_texts.append(text)
i += 1
return clean_texts
# Sample execution
#sample_texts = [
# "Hello, this is a test email. kind regards, John",
# "<div>Email content here</div> many thanks, Jane",
# "caution: this email originated from outside of the organization. do not click links or open attachments unless you recognize the sender and know the content is safe.",
# "[email protected]",
# "Address: 1234 Elm St, AB12 3CD"
#]
#initial_clean(sample_texts)
# +
all_names = [x.lower() for x in list(nltk.corpus.names.words())]
def remove_hyphens(text_text):
return re.sub(r'(\w+)-(\w+)-?(\w)?', r'\1 \2 \3', text_text)
# tokenize text
def tokenize_text(text_text):
TOKEN_PATTERN = r'\s+'
regex_wt = nltk.RegexpTokenizer(pattern=TOKEN_PATTERN, gaps=True)
word_tokens = regex_wt.tokenize(text_text)
return word_tokens
def remove_characters_after_tokenization(tokens):
pattern = re.compile('[{}]'.format(re.escape(string.punctuation)))
filtered_tokens = filter(None, [pattern.sub('', token) for token in tokens])
return filtered_tokens
def convert_to_lowercase(tokens):
return [token.lower() for token in tokens if token.isalpha()]
def remove_stopwords(tokens, custom_stopwords):
stopword_list = nltk.corpus.stopwords.words('english')
stopword_list += my_stop_words
filtered_tokens = [token for token in tokens if token not in stopword_list]
return filtered_tokens
def remove_names(tokens):
stopword_list = list(nltk.corpus.names.words())
stopword_list = [x.lower() for x in stopword_list]
filtered_tokens = [token for token in tokens if token not in stopword_list]
return filtered_tokens
def remove_short_tokens(tokens):
return [token for token in tokens if len(token) > 3]
def keep_only_words_in_wordnet(tokens):
return [token for token in tokens if wn.synsets(token)]
def apply_lemmatize(tokens, wnl=WordNetLemmatizer()):
def lem_word(word):
if len(word) > 3: out_word = wnl.lemmatize(word)
else: out_word = word
return out_word
return [lem_word(token) for token in tokens]
# +
### Do the cleaning
def cleanTexttexts(texts):
clean_texts = []
for text in texts:
#text = remove_email_start(text)
#text = remove_email_end(text)
text = remove_hyphens(text)
text = cleanhtml(text)
text = cleanemail(text)
text = cleanpostcode(text)
text = cleannum(text)
#text = cleanwarning(text)
text_i = tokenize_text(text)
text_i = remove_characters_after_tokenization(text_i)
#text_i = remove_names(text_i)
text_i = convert_to_lowercase(text_i)
#text_i = remove_stopwords(text_i, my_stop_words)
text_i = get_lemma(text_i)
#text_i = remove_short_tokens(text_i)
text_i = keep_only_words_in_wordnet(text_i)
text_i = apply_lemmatize(text_i)
clean_texts.append(text_i)
return clean_texts
# -
def remove_dups_text(data_samples_ready, data_samples_clean, data_samples):
# Identify duplicates in the data: https://stackoverflow.com/questions/44191465/efficiently-identify-duplicates-in-large-list-500-000
# Only identifies the second duplicate
seen = set()
dupes = []
for i, doi in enumerate(data_samples_ready):
if doi not in seen:
seen.add(doi)
else:
dupes.append(i)
#data_samples_ready[dupes[0:]]
# To see a specific duplicated value you know the position of
#matching = [s for s in data_samples_ready if data_samples_ready[83] in s]
#matching
# Remove duplicates only (keep first instance)
#data_samples_ready = list( dict.fromkeys(data_samples_ready) ) # This way would keep one version of the duplicates
### Remove all duplicates including original instance
# Identify ALL duplicates including initial values
# https://stackoverflow.com/questions/11236006/identify-duplicate-values-in-a-list-in-python
from collections import defaultdict
D = defaultdict(list)
for i,item in enumerate(data_samples_ready):
D[item].append(i)
D = {k:v for k,v in D.items() if len(v)>1}
# https://stackoverflow.com/questions/952914/how-to-make-a-flat-list-out-of-a-list-of-lists
L = list(D.values())
flat_list_dups = [item for sublist in L for item in sublist]
# https://stackoverflow.com/questions/11303225/how-to-remove-multiple-indexes-from-a-list-at-the-same-time
for index in sorted(flat_list_dups, reverse=True):
del data_samples_ready[index]
del data_samples_clean[index]
del data_samples[index]
# Remove blanks
data_samples_ready = [i for i in data_samples_ready if i]
data_samples_clean = [i for i in data_samples_clean if i]
data_samples = [i for i in data_samples if i]
return data_samples_ready, data_samples_clean, flat_list_dups, data_samples
|