File size: 13,672 Bytes
78d71d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
# ---
# jupyter:
#   jupytext:
#     formats: ipynb,py:light
#     text_representation:
#       extension: .py
#       format_name: light
#       format_version: '1.5'
#       jupytext_version: 1.14.6
#   kernelspec:
#     display_name: Python 3 (ipykernel)
#     language: python
#     name: python3
# ---

# # Ingest website to FAISS

# ## Install/ import stuff we need

import os
from pathlib import Path
import re
import pandas as pd
from typing import TypeVar, List

#from langchain.embeddings import HuggingFaceEmbeddings # HuggingFaceInstructEmbeddings, 
from langchain.vectorstores.faiss import FAISS
from langchain.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.docstore.document import Document

#from bs4 import BeautifulSoup
#from docx import Document as Doc
#from pypdf import PdfReader

PandasDataFrame = TypeVar('pd.core.frame.DataFrame')
# -

split_strat = ["\n\n", "\n", ". ", "! ", "? "]
chunk_size = 500
chunk_overlap = 0
start_index = True

## Parse files
def determine_file_type(file_path):
        """
        Determine the file type based on its extension.
    
        Parameters:
            file_path (str): Path to the file.
    
        Returns:
            str: File extension (e.g., '.pdf', '.docx', '.txt', '.html').
        """
        return os.path.splitext(file_path)[1].lower()

def parse_file(file_paths, text_column='text'):
    """
    Accepts a list of file paths, determines each file's type based on its extension,
    and passes it to the relevant parsing function.
    
    Parameters:
        file_paths (list): List of file paths.
        text_column (str): Name of the column in CSV/Excel files that contains the text content.
    
    Returns:
        dict: A dictionary with file paths as keys and their parsed content (or error message) as values.
    """
    
    

    if not isinstance(file_paths, list):
        raise ValueError("Expected a list of file paths.")
    
    extension_to_parser = {
        # '.pdf': parse_pdf,
        # '.docx': parse_docx,
        # '.txt': parse_txt,
        # '.html': parse_html,
        # '.htm': parse_html,  # Considering both .html and .htm for HTML files
        '.csv': lambda file_path: parse_csv_or_excel(file_path, text_column),
        '.xlsx': lambda file_path: parse_csv_or_excel(file_path, text_column)
    }
    
    parsed_contents = {}
    file_names = []

    for file_path in file_paths:
        print(file_path.name)
        #file = open(file_path.name, 'r')
        #print(file)
        file_extension = determine_file_type(file_path.name)
        if file_extension in extension_to_parser:
            parsed_contents[file_path.name] = extension_to_parser[file_extension](file_path.name)
        else:
            parsed_contents[file_path.name] = f"Unsupported file type: {file_extension}"

        filename_end = get_file_path_end(file_path.name)

        file_names.append(filename_end)
    
    return parsed_contents, file_names

def text_regex_clean(text):
    # Merge hyphenated words
        text = re.sub(r"(\w+)-\n(\w+)", r"\1\2", text)
        # If a double newline ends in a letter, add a full stop.
        text = re.sub(r'(?<=[a-zA-Z])\n\n', '.\n\n', text)
        # Fix newlines in the middle of sentences
        text = re.sub(r"(?<!\n\s)\n(?!\s\n)", " ", text.strip())
        # Remove multiple newlines
        text = re.sub(r"\n\s*\n", "\n\n", text)
        text = re.sub(r"  ", " ", text)
        # Add full stops and new lines between words with no space between where the second one has a capital letter
        text = re.sub(r'(?<=[a-z])(?=[A-Z])', '. \n\n', text)

        return text

def parse_csv_or_excel(file_path, text_column = "text"):
        """
        Read in a CSV or Excel file.
        
        Parameters:
            file_path (str): Path to the CSV file.
            text_column (str): Name of the column in the CSV file that contains the text content.
        
        Returns:
            Pandas DataFrame: Dataframe output from file read
        """

        #out_df = pd.DataFrame()

        #for file_path in file_paths:
        file_extension = determine_file_type(file_path.name)
        file_name = get_file_path_end(file_path.name)
        file_names = [file_name]

        if file_extension == ".csv":
                df = pd.read_csv(file_path.name, low_memory=False)
                if text_column not in df.columns: return pd.DataFrame(), ['Please choose a valid column name']
                df['source'] = file_name
                df['page_section'] = ""
        elif file_extension == ".xlsx":
                df = pd.read_excel(file_path.name, engine='openpyxl')
                if text_column not in df.columns: return pd.DataFrame(), ['Please choose a valid column name']
                df['source'] = file_name
                df['page_section'] = ""
        else:
                print(f"Unsupported file type: {file_extension}")
                return pd.DataFrame(), ['Please choose a valid file type']
            
        #    file_names.append(file_name)
        #    out_df = pd.concat([out_df, df])
        
        #if text_column not in df.columns:
        #    return f"Column '{text_column}' not found in {file_path}"
        #text_out = " ".join(df[text_column].dropna().astype(str))
        return df, file_names

def parse_excel(file_path, text_column):
        """
        Read text from an Excel file.
        
        Parameters:
            file_path (str): Path to the Excel file.
            text_column (str): Name of the column in the Excel file that contains the text content.
        
        Returns:
            Pandas DataFrame: Dataframe output from file read
        """
        df = pd.read_excel(file_path, engine='openpyxl')
        #if text_column not in df.columns:
        #    return f"Column '{text_column}' not found in {file_path}"
        #text_out = " ".join(df[text_column].dropna().astype(str))
        return df

def get_file_path_end(file_path):
    match = re.search(r'(.*[\/\\])?(.+)$', file_path)
        
    filename_end = match.group(2) if match else ''

    return filename_end

# +
# Convert parsed text to docs
# -

def text_to_docs(text_dict: dict, chunk_size: int = chunk_size) -> List[Document]:
    """
    Converts the output of parse_file (a dictionary of file paths to content)
    to a list of Documents with metadata.
    """
    
    doc_sections = []
    parent_doc_sections = []

    for file_path, content in text_dict.items():
        ext = os.path.splitext(file_path)[1].lower()

        # Depending on the file extension, handle the content
        # if ext == '.pdf':
        #     docs, page_docs = pdf_text_to_docs(content, chunk_size)
        # elif ext in ['.html', '.htm', '.txt', '.docx']:
        #     docs = html_text_to_docs(content, chunk_size)
        if ext in ['.csv', '.xlsx']:
            docs, page_docs = csv_excel_text_to_docs(content, chunk_size)
        else:
            print(f"Unsupported file type {ext} for {file_path}. Skipping.")
            continue

        
        filename_end = get_file_path_end(file_path)

        #match = re.search(r'(.*[\/\\])?(.+)$', file_path)
        #filename_end = match.group(2) if match else ''

        # Add filename as metadata
        for doc in docs: doc.metadata["source"] = filename_end
        #for parent_doc in parent_docs: parent_doc.metadata["source"] = filename_end
        
        doc_sections.extend(docs)
        #parent_doc_sections.extend(parent_docs)

    return doc_sections#, page_docs


def write_out_metadata_as_string(metadata_in):
    # If metadata_in is a single dictionary, wrap it in a list
    if isinstance(metadata_in, dict):
        metadata_in = [metadata_in]

    metadata_string = [f"{'  '.join(f'{k}: {v}' for k, v in d.items() if k != 'page_section')}" for d in metadata_in] # ['metadata']
    return metadata_string

def csv_excel_text_to_docs(df, text_column='text', chunk_size=None) -> List[Document]:
    """Converts a DataFrame's content to a list of Documents with metadata."""
    
    doc_sections = []
    df[text_column] = df[text_column].astype(str) # Ensure column is a string column

    # For each row in the dataframe
    for idx, row in df.iterrows():
        # Extract the text content for the document
        doc_content = row[text_column]
        
        # Generate metadata containing other columns' data
        metadata = {"row": idx + 1}
        for col, value in row.items():
            if col != text_column:
                metadata[col] = value

        metadata_string = write_out_metadata_as_string(metadata)[0]

        

        # If chunk_size is provided, split the text into chunks
        if chunk_size:
            # Assuming you have a text splitter function similar to the PDF handling
            text_splitter = RecursiveCharacterTextSplitter(
                chunk_size=chunk_size,
                # Other arguments as required by the splitter
            )
            sections = text_splitter.split_text(doc_content)

            
            # For each section, create a Document object
            for i, section in enumerate(sections):
                #section = '. '.join([metadata_string, section])
                doc = Document(page_content=section, 
                               metadata={**metadata, "section": i, "row_section": f"{metadata['row']}-{i}"})
                doc_sections.append(doc)
        else:
            # If no chunk_size is provided, create a single Document object for the row
            #doc_content = '. '.join([metadata_string, doc_content])
            doc = Document(page_content=doc_content, metadata=metadata)
            doc_sections.append(doc)
    
    return doc_sections

# # Functions for working with documents after loading them back in

def pull_out_data(series):

    # define a lambda function to convert each string into a tuple
    to_tuple = lambda x: eval(x)

    # apply the lambda function to each element of the series
    series_tup = series.apply(to_tuple)

    series_tup_content = list(zip(*series_tup))[1]

    series = pd.Series(list(series_tup_content))#.str.replace("^Main post content", "", regex=True).str.strip()

    return series

def docs_from_csv(df):

    import ast
    
    documents = []
    
    page_content = pull_out_data(df["0"])
    metadatas = pull_out_data(df["1"])

    for x in range(0,len(df)):       
        new_doc = Document(page_content=page_content[x], metadata=metadatas[x])
        documents.append(new_doc)
        
    return documents

def docs_from_lists(docs, metadatas):

    documents = []

    for x, doc in enumerate(docs):
        new_doc = Document(page_content=doc, metadata=metadatas[x])
        documents.append(new_doc)
        
    return documents

def docs_elements_from_csv_save(docs_path="documents.csv"):

    documents = pd.read_csv(docs_path)

    docs_out = docs_from_csv(documents)

    out_df = pd.DataFrame(docs_out)

    docs_content = pull_out_data(out_df[0].astype(str))

    docs_meta = pull_out_data(out_df[1].astype(str))

    doc_sources = [d['source'] for d in docs_meta]

    return out_df, docs_content, docs_meta, doc_sources

# ## Create embeddings and save faiss vector store to the path specified in `save_to`

def load_embeddings(model_name = "BAAI/bge-base-en-v1.5"):

    #if model_name == "hkunlp/instructor-large":
    #    embeddings_func = HuggingFaceInstructEmbeddings(model_name=model_name,
    #    embed_instruction="Represent the paragraph for retrieval: ",
    #    query_instruction="Represent the question for retrieving supporting documents: "
    #    )

    #else: 
    embeddings_func = HuggingFaceEmbeddings(model_name=model_name)

    global embeddings

    embeddings = embeddings_func

    return embeddings_func

def embed_faiss_save_to_zip(docs_out, save_to="faiss_lambeth_census_embedding", model_name = "BAAI/bge-base-en-v1.5"):

    load_embeddings(model_name=model_name)

    #embeddings_fast = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")

    print(f"> Total split documents: {len(docs_out)}")

    vectorstore = FAISS.from_documents(documents=docs_out, embedding=embeddings)
        

    if Path(save_to).exists():
        vectorstore.save_local(folder_path=save_to)

    print("> DONE")
    print(f"> Saved to: {save_to}")

    ### Save as zip, then remove faiss/pkl files to allow for upload to huggingface

    import shutil

    shutil.make_archive(save_to, 'zip', save_to)

    os.remove(save_to + "/index.faiss")
    os.remove(save_to + "/index.pkl")

    shutil.move(save_to + '.zip', save_to + "/" + save_to + '.zip')

    return vectorstore

def docs_to_chroma_save(embeddings, docs_out:PandasDataFrame, save_to:str):
    print(f"> Total split documents: {len(docs_out)}")
    
    vectordb = Chroma.from_documents(documents=docs_out, 
                                 embedding=embeddings,
                                 persist_directory=save_to)
    
    # persiste the db to disk
    vectordb.persist()
    
    print("> DONE")
    print(f"> Saved to: {save_to}")
    
    return vectordb

def sim_search_local_saved_vec(query, k_val, save_to="faiss_lambeth_census_embedding"):

    load_embeddings()

    docsearch = FAISS.load_local(folder_path=save_to, embeddings=embeddings)


    display(Markdown(question))

    search = docsearch.similarity_search_with_score(query, k=k_val)

    for item in search:
        print(item[0].page_content)
        print(f"Page: {item[0].metadata['source']}")
        print(f"Date: {item[0].metadata['date']}")
        print(f"Score: {item[1]}")
        print("---")