File size: 26,850 Bytes
a265560 0ea8b9e a265560 ab04c92 0ea8b9e ab04c92 f47b137 ab04c92 0ea8b9e a265560 ab04c92 a265560 0ea8b9e a265560 7907ad4 a265560 0ea8b9e a265560 0ea8b9e f47b137 0ea8b9e a265560 0ea8b9e a265560 f47b137 ab04c92 f47b137 ab04c92 f47b137 ab04c92 f47b137 ab04c92 f47b137 ab04c92 f47b137 a265560 ab04c92 0ea8b9e ab04c92 a265560 ab04c92 0ea8b9e ab04c92 a265560 0ea8b9e ab04c92 0ea8b9e ab04c92 0ea8b9e ab04c92 a265560 ab04c92 0ea8b9e ab04c92 f47b137 ab04c92 a265560 ab04c92 f47b137 0ea8b9e ab04c92 0ea8b9e ab04c92 0ea8b9e f47b137 ab04c92 f47b137 ab04c92 f47b137 ab04c92 f47b137 0ea8b9e f47b137 ab04c92 f47b137 ab04c92 f47b137 a265560 ab04c92 f47b137 ab04c92 0ea8b9e f47b137 0ea8b9e f47b137 a265560 f47b137 a265560 f47b137 a265560 f47b137 a265560 f47b137 a265560 f47b137 a265560 f47b137 a265560 f47b137 3946be6 f47b137 3946be6 f47b137 a265560 f47b137 a265560 f47b137 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 |
import pandas as pd
import os
import re
from tools.helper_functions import OUTPUT_FOLDER
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from typing import List, Tuple
import gradio as gr
from gradio import Progress
from pathlib import Path
from pymupdf import Document
from tools.file_conversion import redact_whole_pymupdf_page, convert_annotation_data_to_dataframe
import en_core_web_lg
nlp = en_core_web_lg.load()
similarity_threshold = 0.95
def combine_ocr_output_text(input_files:List[str], output_folder:str=OUTPUT_FOLDER):
"""
Combines text from multiple CSV files containing page and text columns.
Groups text by file and page number, concatenating text within these groups.
Args:
input_files (list): List of paths to CSV files
Returns:
pd.DataFrame: Combined dataframe with columns [file, page, text]
"""
all_data = []
output_files = []
if isinstance(input_files, str):
file_paths_list = [input_files]
else:
file_paths_list = input_files
for file in file_paths_list:
if isinstance(file, str):
file_path = file
else:
file_path = file.name
# Read CSV file
df = pd.read_csv(file_path)
# Ensure required columns exist
if 'page' not in df.columns or 'text' not in df.columns:
print(f"Warning: Skipping {file_path} - missing required columns 'page' and 'text'")
continue
df['text'] = df['text'].fillna('').astype(str)
# Group by page and concatenate text
grouped = df.groupby('page')['text'].apply(' '.join).reset_index()
# Add filename column
grouped['file'] = os.path.basename(file_path)
all_data.append(grouped)
if not all_data:
raise ValueError("No valid CSV files were processed")
# Combine all dataframes
combined_df = pd.concat(all_data, ignore_index=True)
# Reorder columns
combined_df = combined_df[['file', 'page', 'text']]
output_combined_file_path = output_folder + "combined_ocr_output_files.csv"
combined_df.to_csv(output_combined_file_path, index=None)
output_files.append(output_combined_file_path)
return combined_df, output_files
def process_data(df:pd.DataFrame, column:str):
'''
Clean and stem text columns in a data frame
'''
def _clean_text(raw_text):
# Remove HTML tags
clean = re.sub(r'<.*?>', '', raw_text)
clean = ' '.join(clean.split())
# Join the cleaned words back into a string
return clean
# Function to apply lemmatisation and remove stopwords
def _apply_lemmatization(text):
doc = nlp(text)
# Keep only alphabetic tokens and remove stopwords
lemmatized_words = [token.lemma_ for token in doc if token.is_alpha and not token.is_stop]
return ' '.join(lemmatized_words)
df['text_clean'] = df[column].apply(_clean_text)
df['text_clean'] = df['text_clean'].apply(_apply_lemmatization)
return df
def map_metadata_single_page(similarity_df:pd.DataFrame, metadata_source_df:pd.DataFrame, preview_length:int=200):
"""Helper to map metadata for single page results."""
metadata_df = metadata_source_df[['file', 'page', 'text']]
results_df = similarity_df.merge(metadata_df, left_on='Page1_Index', right_index=True)\
.rename(columns={'file': 'Page1_File', 'page': 'Page1_Page', 'text': 'Page1_Text'})
results_df = results_df.merge(metadata_df, left_on='Page2_Index', right_index=True, suffixes=('_1', '_2'))\
.rename(columns={'file': 'Page2_File', 'page': 'Page2_Page', 'text': 'Page2_Text'})
results_df["Similarity_Score"] = results_df["Similarity_Score"].round(3)
final_df = results_df[['Page1_File', 'Page1_Page', 'Page2_File', 'Page2_Page', 'Similarity_Score', 'Page1_Text', 'Page2_Text']]
final_df = final_df.sort_values(["Page1_File", "Page1_Page", "Page2_File", "Page2_Page"])
final_df['Page1_Text'] = final_df['Page1_Text'].str[:preview_length]
final_df['Page2_Text'] = final_df['Page2_Text'].str[:preview_length]
return final_df
def map_metadata_subdocument(subdocument_df:pd.DataFrame, metadata_source_df:pd.DataFrame, preview_length:int=200):
"""Helper to map metadata for subdocument results."""
metadata_df = metadata_source_df[['file', 'page', 'text']]
subdocument_df = subdocument_df.merge(metadata_df, left_on='Page1_Start_Index', right_index=True)\
.rename(columns={'file': 'Page1_File', 'page': 'Page1_Start_Page', 'text': 'Page1_Text'})
subdocument_df = subdocument_df.merge(metadata_df[['page']], left_on='Page1_End_Index', right_index=True)\
.rename(columns={'page': 'Page1_End_Page'})
subdocument_df = subdocument_df.merge(metadata_df, left_on='Page2_Start_Index', right_index=True)\
.rename(columns={'file': 'Page2_File', 'page': 'Page2_Start_Page', 'text': 'Page2_Text'})
subdocument_df = subdocument_df.merge(metadata_df[['page']], left_on='Page2_End_Index', right_index=True)\
.rename(columns={'page': 'Page2_End_Page'})
cols = ['Page1_File', 'Page1_Start_Page', 'Page1_End_Page',
'Page2_File', 'Page2_Start_Page', 'Page2_End_Page',
'Match_Length', 'Page1_Text', 'Page2_Text']
# Add Avg_Similarity if it exists (it won't for greedy match unless we add it)
if 'Avg_Similarity' in subdocument_df.columns:
subdocument_df['Avg_Similarity'] = subdocument_df['Avg_Similarity'].round(3)
cols.insert(7, 'Avg_Similarity')
final_df = subdocument_df[cols]
final_df = final_df.sort_values(['Page1_File', 'Page1_Start_Page', 'Page2_File', 'Page2_Start_Page'])
final_df['Page1_Text'] = final_df['Page1_Text'].str[:preview_length]
final_df['Page2_Text'] = final_df['Page2_Text'].str[:preview_length]
return final_df
def save_results_and_redaction_lists(final_df: pd.DataFrame, output_folder: str) -> list:
"""
Saves the main results DataFrame and generates per-file redaction lists.
This function is extracted to be reusable.
Args:
final_df (pd.DataFrame): The DataFrame containing the final match results.
output_folder (str): The folder to save the output files.
Returns:
list: A list of paths to all generated files.
"""
output_paths = []
output_folder_path = Path(output_folder)
output_folder_path.mkdir(exist_ok=True)
if final_df.empty:
print("No matches to save.")
return []
# 1. Save the main results DataFrame
similarity_file_output_path = output_folder_path / 'page_similarity_results.csv'
final_df.to_csv(similarity_file_output_path, index=False)
output_paths.append(str(similarity_file_output_path))
print(f"Main results saved to {similarity_file_output_path}")
# 2. Save per-file redaction lists
# Use 'Page2_File' as the source of duplicate content
grouping_col = 'Page2_File'
if grouping_col not in final_df.columns:
print("Warning: 'Page2_File' column not found. Cannot generate redaction lists.")
return output_paths
for redact_file, group in final_df.groupby(grouping_col):
output_file_name_stem = Path(redact_file).stem
output_file_path = output_folder_path / f"{output_file_name_stem}_pages_to_redact.csv"
all_pages_to_redact = set()
is_subdocument_match = 'Page2_Start_Page' in group.columns
if is_subdocument_match:
for _, row in group.iterrows():
pages_in_range = range(int(row['Page2_Start_Page']), int(row['Page2_End_Page']) + 1)
all_pages_to_redact.update(pages_in_range)
else:
pages = group['Page2_Page'].unique()
all_pages_to_redact.update(pages)
if all_pages_to_redact:
redaction_df = pd.DataFrame(sorted(list(all_pages_to_redact)), columns=['Page_to_Redact'])
redaction_df.to_csv(output_file_path, header=False, index=False)
output_paths.append(str(output_file_path))
print(f"Redaction list for {redact_file} saved to {output_file_path}")
return output_paths
def identify_similar_pages(
df_combined: pd.DataFrame,
similarity_threshold: float = 0.9,
min_word_count: int = 10,
min_consecutive_pages: int = 1,
greedy_match: bool = False, # NEW parameter
output_folder: str = OUTPUT_FOLDER,
progress=Progress(track_tqdm=True)
) -> Tuple[pd.DataFrame, List[str], pd.DataFrame]:
"""
Identifies similar pages with three possible strategies:
1. Single Page: If greedy_match=False and min_consecutive_pages=1.
2. Fixed-Length Subdocument: If greedy_match=False and min_consecutive_pages > 1.
3. Greedy Consecutive Match: If greedy_match=True.
"""
output_paths = []
progress(0.1, desc="Processing and filtering text")
df = process_data(df_combined, 'text')
df['word_count'] = df['text_clean'].str.split().str.len().fillna(0)
original_row_count = len(df)
df_filtered = df[df['word_count'] >= min_word_count].copy()
df_filtered.reset_index(drop=True, inplace=True)
print(f"Filtered out {original_row_count - len(df_filtered)} pages with fewer than {min_word_count} words.")
if len(df_filtered) < 2:
return pd.DataFrame(), [], df_combined
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(df_filtered['text_clean'])
progress(0.3, desc="Calculating text similarity")
similarity_matrix = cosine_similarity(tfidf_matrix, dense_output=False)
coo_matrix = similarity_matrix.tocoo()
# Create a DataFrame of all individual page pairs above the threshold.
# This is the base for all three matching strategies.
similar_pages = [
(r, c, v) for r, c, v in zip(coo_matrix.row, coo_matrix.col, coo_matrix.data)
if r < c and v >= similarity_threshold
]
if not similar_pages:
return pd.DataFrame(), [], df_combined
base_similarity_df = pd.DataFrame(similar_pages, columns=['Page1_Index', 'Page2_Index', 'Similarity_Score'])
progress(0.6, desc="Aggregating results based on matching strategy")
if greedy_match:
print("Finding matches using greedy consecutive strategy.")
# A set of pairs for fast lookups of (page1_idx, page2_idx)
valid_pairs_set = set(zip(base_similarity_df['Page1_Index'], base_similarity_df['Page2_Index']))
# Keep track of indices that have been used in a sequence
consumed_indices_1 = set()
consumed_indices_2 = set()
all_sequences = []
# Iterate through all potential starting pairs, sorted for consistent results
sorted_pairs = base_similarity_df.sort_values(['Page1_Index', 'Page2_Index'])
for _, row in sorted_pairs.iterrows():
start_idx1, start_idx2 = int(row['Page1_Index']), int(row['Page2_Index'])
# If this pair has already been consumed by a previous sequence, skip it
if start_idx1 in consumed_indices_1 or start_idx2 in consumed_indices_2:
continue
# This is a new sequence, start expanding it
current_sequence = [(start_idx1, start_idx2)]
k = 1
while True:
next_idx1 = start_idx1 + k
next_idx2 = start_idx2 + k
# Check if the next pair in the sequence is a valid match
if (next_idx1, next_idx2) in valid_pairs_set and \
next_idx1 not in consumed_indices_1 and \
next_idx2 not in consumed_indices_2:
current_sequence.append((next_idx1, next_idx2))
k += 1
else:
# The sequence has ended
break
# Record the found sequence and mark all its pages as consumed
sequence_indices_1 = [p[0] for p in current_sequence]
sequence_indices_2 = [p[1] for p in current_sequence]
all_sequences.append({
'Page1_Start_Index': sequence_indices_1[0], 'Page1_End_Index': sequence_indices_1[-1],
'Page2_Start_Index': sequence_indices_2[0], 'Page2_End_Index': sequence_indices_2[-1],
'Match_Length': len(current_sequence)
})
consumed_indices_1.update(sequence_indices_1)
consumed_indices_2.update(sequence_indices_2)
if not all_sequences:
return pd.DataFrame(), [], df_combined
subdocument_df = pd.DataFrame(all_sequences)
# We can add back the average similarity if needed, but it requires more lookups.
# For now, we'll omit it for simplicity in the greedy approach.
# ... (The rest is metadata mapping, same as the subdocument case)
elif min_consecutive_pages > 1:
# --- STRATEGY 2: Fixed-Length Subdocument Matching ---
print(f"Finding consecutive page matches (min_consecutive_pages > 1)")
similarity_df = base_similarity_df.copy()
similarity_df.sort_values(['Page1_Index', 'Page2_Index'], inplace=True)
is_consecutive = (similarity_df['Page1_Index'].diff() == 1) & (similarity_df['Page2_Index'].diff() == 1)
block_id = is_consecutive.eq(False).cumsum()
grouped = similarity_df.groupby(block_id)
agg_results = grouped.agg(
Page1_Start_Index=('Page1_Index', 'first'), Page2_Start_Index=('Page2_Index', 'first'),
Page1_End_Index=('Page1_Index', 'last'), Page2_End_Index=('Page2_Index', 'last'),
Match_Length=('Page1_Index', 'size'), Avg_Similarity=('Similarity_Score', 'mean')
).reset_index(drop=True)
subdocument_df = agg_results[agg_results['Match_Length'] >= min_consecutive_pages].copy()
if subdocument_df.empty: return pd.DataFrame(), [], df_combined
else:
# --- STRATEGY 1: Single Page Matching ---
print(f"Finding single page matches (min_consecutive_pages=1)")
final_df = map_metadata_single_page(base_similarity_df, df_filtered)
# The rest of the logic (saving files) is handled after this if/else block
pass # The final_df is already prepared
# --- Map metadata and format output ---
# This block now handles the output for both subdocument strategies (2 and 3)
if greedy_match or min_consecutive_pages > 1:
final_df = map_metadata_subdocument(subdocument_df, df_filtered)
progress(0.8, desc="Saving output files")
output_paths = save_results_and_redaction_lists(final_df, output_folder)
return final_df, output_paths, df_combined
# ==============================================================================
# GRADIO HELPER FUNCTIONS
# ==============================================================================
# full_data:pd.DataFrame,
def handle_selection_and_preview(evt: gr.SelectData, results_df:pd.DataFrame, full_duplicate_data_by_file: dict):
"""
This single function handles a user selecting a row. It:
1. Determines the selected row index.
2. Calls the show_page_previews function to get the text data.
3. Returns all the necessary outputs for the UI.
"""
# If the user deselects, the event might be None.
if not evt:
return None, None, None # Clear state and both preview panes
# 1. Get the selected index
selected_index = evt.index[0]
# 2. Get the preview data
page1_data, page2_data = show_page_previews(full_duplicate_data_by_file, results_df, evt)
# 3. Return all three outputs in the correct order
return selected_index, page1_data, page2_data
def exclude_match(results_df:pd.DataFrame, selected_index:int, output_folder="./output/"):
"""
Removes a selected row from the results DataFrame, regenerates output files,
and clears the text preview panes.
"""
if selected_index is None:
gr.Warning("No match selected. Please click on a row in the table first.")
# Return the original dataframe and update=False for the files
return results_df, gr.update(), None, None
if results_df.empty:
gr.Warning("No duplicate page results found, nothing to exclude.")
return results_df, gr.update(), None, None
# Drop the selected row
updated_df = results_df.drop(selected_index).reset_index(drop=True)
# Recalculate all output files using the helper function
new_output_paths = save_results_and_redaction_lists(updated_df, output_folder)
gr.Info(f"Match at row {selected_index} excluded. Output files have been updated.")
# Return the updated dataframe, the new file list, and clear the preview panes
return updated_df, new_output_paths, None, None
def run_duplicate_analysis(files:list[pd.DataFrame], threshold:float, min_words:int, min_consecutive:int, greedy_match:bool, preview_length:int=500, progress=gr.Progress(track_tqdm=True)):
"""
Wrapper function updated to include the 'greedy_match' boolean.
"""
if not files:
gr.Warning("Please upload files to analyze.")
return None, None, None
progress(0, desc="Combining input files...")
df_combined, _ = combine_ocr_output_text(files)
if df_combined.empty:
gr.Warning("No data found in the uploaded files.")
return None, None, None
# Call the main analysis function with the new parameter
results_df, output_paths, full_df = identify_similar_pages(
df_combined=df_combined,
similarity_threshold=threshold,
min_word_count=min_words,
min_consecutive_pages=int(min_consecutive),
greedy_match=greedy_match,
progress=progress
)
# Clip text to first 200 characters
full_df['text'] = full_df['text'].str[:preview_length]
# Preprocess full_data (without preview text) for fast access (run once)
full_data_by_file = {
file: df.sort_values('page').set_index('page')
for file, df in full_df.drop(["text_clean"],axis=1).groupby('file')
}
if results_df.empty:
gr.Info(f"No duplicate pages found, no results returned.")
return results_df, output_paths, full_data_by_file # full_df,
def show_page_previews(full_data_by_file: dict, results_df: pd.DataFrame, evt: gr.SelectData, preview_length:int=500):
"""
Optimized version using pre-partitioned and indexed full_data.
Triggered when a user selects a row in the results DataFrame.
"""
if not full_data_by_file or results_df is None or not evt:
return None, None
selected_row = results_df.iloc[evt.index[0], :]
is_subdocument_match = 'Page1_Start_Page' in selected_row
if is_subdocument_match:
file1, start1, end1 = selected_row['Page1_File'], selected_row['Page1_Start_Page'], selected_row['Page1_End_Page']
file2, start2, end2 = selected_row['Page2_File'], selected_row['Page2_Start_Page'], selected_row['Page2_End_Page']
page1_data = full_data_by_file[file1].loc[start1:end1, ['text']].reset_index()
page2_data = full_data_by_file[file2].loc[start2:end2, ['text']].reset_index()
else:
file1, page1 = selected_row['Page1_File'], selected_row['Page1_Page']
file2, page2 = selected_row['Page2_File'], selected_row['Page2_Page']
page1_data = full_data_by_file[file1].loc[[page1], ['text']].reset_index()
page2_data = full_data_by_file[file2].loc[[page2], ['text']].reset_index()
page1_data['text'] = page1_data['text'].str[:preview_length]
page2_data['text'] = page2_data['text'].str[:preview_length]
return page1_data[['page', 'text']], page2_data[['page', 'text']]
def apply_whole_page_redactions_from_list(duplicate_page_numbers_df:pd.DataFrame, doc_file_name_with_extension_textbox:str, review_file_state:pd.DataFrame, duplicate_output_paths:list[str], pymupdf_doc:object, page_sizes:list[dict], all_existing_annotations:list[dict]):
'''
Take a list of suggested whole pages to redact and apply it to review file data currently available from an existing PDF under review
'''
# Create a copy of annotations to avoid modifying the original
all_annotations = all_existing_annotations.copy()
if not pymupdf_doc:
print("Warning: No document file currently under review. Please upload a document on the 'Review redactions' tab to apply whole page redactions.")
raise Warning("No document file currently under review. Please upload a document on the 'Review redactions' tab to apply whole page redactions.")
return review_file_state, all_annotations
# Initialize list of pages to redact
list_whole_pages_to_redact = []
# Get list of pages to redact from either dataframe or file
if not duplicate_page_numbers_df.empty:
list_whole_pages_to_redact = duplicate_page_numbers_df.iloc[:, 0].tolist()
elif duplicate_output_paths:
expected_duplicate_pages_to_redact_name = f"{doc_file_name_with_extension_textbox}"
whole_pages_list = pd.DataFrame() # Initialize empty DataFrame
for output_file in duplicate_output_paths:
# Note: output_file.name might not be available if output_file is just a string path
# If it's a Path object or similar, .name is fine. Otherwise, parse from string.
file_name_from_path = output_file.split('/')[-1] if isinstance(output_file, str) else output_file.name
if expected_duplicate_pages_to_redact_name in file_name_from_path:
whole_pages_list = pd.read_csv(output_file, header=None) # Use output_file directly if it's a path
break
if not whole_pages_list.empty:
list_whole_pages_to_redact = whole_pages_list.iloc[:, 0].tolist()
# Convert to set to remove duplicates, then back to list
list_whole_pages_to_redact = list(set(list_whole_pages_to_redact))
if not list_whole_pages_to_redact:
# Assuming gr is defined (e.g., gradio)
print("No relevant list of whole pages to redact found, returning inputs.")
raise Warning("Warning: No relevant list of whole pages to redact found, returning inputs.")
return review_file_state, all_existing_annotations
new_annotations = []
# Process each page for redaction
for page in list_whole_pages_to_redact:
try:
page_index = int(page) - 1
if page_index < 0 or page_index >= len(pymupdf_doc):
print(f"Page {page} is out of bounds for a document with {len(pymupdf_doc)} pages, skipping.")
continue
pymupdf_page = pymupdf_doc[page_index]
# Find the matching page size dictionary
page_size = next((size for size in page_sizes if size["page"] == int(page)), None)
if not page_size:
print(f"Page {page} not found in page_sizes object, skipping.")
continue
rect_height = page_size["cropbox_height"]
rect_width = page_size["cropbox_width"]
image = page_size["image_path"] # This `image` likely represents the page identifier
# Create the whole page redaction box
annotation_box = redact_whole_pymupdf_page(rect_height, rect_width, pymupdf_page, border=0.005, redact_pdf=False)
# Find existing annotation for this image/page
current_page_existing_boxes_group = next((annot_group for annot_group in all_annotations if annot_group["image"] == image), None)
new_annotation_group = {
"image": image,
"boxes": [annotation_box]
}
if current_page_existing_boxes_group:
# Check if we already have a whole page redaction for this page
if not any(box["label"] == "Whole page" for box in current_page_existing_boxes_group["boxes"]):
current_page_existing_boxes_group["boxes"].append(annotation_box)
else:
# Optional: Print a message if a whole-page redaction already exists for this page
print(f"Whole page redaction for page {page} already exists in annotations, skipping addition.")
pass
else: # Create new annotation entry
all_annotations.append(new_annotation_group)
new_annotations.append(new_annotation_group)
except Exception as e:
print(f"Error processing page {page}: {str(e)}")
continue
# Convert annotations to dataframe and combine with existing review file
whole_page_review_file = convert_annotation_data_to_dataframe(new_annotations)
# Ensure all required columns are present in both DataFrames before concat
# This is a common point of error if DFs have different schemas
expected_cols = ['image', 'page', 'label', 'color', 'xmin', 'ymin', 'xmax', 'ymax', 'text', 'id']
for col in expected_cols:
if col not in review_file_state.columns:
review_file_state[col] = None # Or an appropriate default value
if col not in whole_page_review_file.columns:
whole_page_review_file[col] = None
review_file_out = pd.concat([review_file_state, whole_page_review_file], ignore_index=True)
review_file_out = review_file_out.sort_values(by=["page", "ymin", "xmin"])
# --- Remove duplicate entries from the final DataFrame ---
dedup_subset_cols = ['page', 'label', 'text', 'id']
# Ensure these columns exist before trying to use them as subset for drop_duplicates
if all(col in review_file_out.columns for col in dedup_subset_cols):
review_file_out = review_file_out.drop_duplicates(
subset=dedup_subset_cols,
keep='first' # Keep the first occurrence of a duplicate redaction
)
else:
print(f"Warning: Not all columns required for de-duplication ({dedup_subset_cols}) are present in review_file_out. Skipping specific de-duplication.")
# You might want a fallback or to inspect what's missing
review_file_out.to_csv(OUTPUT_FOLDER + "review_file_out_after_whole_page.csv")
gr.Info("Successfully created whole page redactions. Go to the 'Review redactions' tab to see them.")
return review_file_out, all_annotations |