Spaces:
Sleeping
Sleeping
arxivgpt kim
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,4 @@
|
|
| 1 |
-
|
| 2 |
-
from gradio_client import Client
|
| 3 |
-
import json
|
| 4 |
-
import re
|
| 5 |
-
from moviepy.editor import VideoFileClip
|
| 6 |
-
from moviepy.audio.AudioClip import AudioClip
|
| 7 |
import requests
|
| 8 |
|
| 9 |
def search_pexels_images(query):
|
|
@@ -19,136 +14,6 @@ def search_pexels_images(query):
|
|
| 19 |
images_urls = [photo['src']['medium'] for photo in data['photos']]
|
| 20 |
return images_urls
|
| 21 |
|
| 22 |
-
def extract_audio(video_in):
|
| 23 |
-
input_video = video_in
|
| 24 |
-
output_audio = 'audio.wav'
|
| 25 |
-
|
| 26 |
-
# Open the video file and extract the audio
|
| 27 |
-
video_clip = VideoFileClip(input_video)
|
| 28 |
-
audio_clip = video_clip.audio
|
| 29 |
-
|
| 30 |
-
# Save the audio as a .wav file
|
| 31 |
-
audio_clip.write_audiofile(output_audio, fps=44100) # Use 44100 Hz as the sample rate for .wav files
|
| 32 |
-
print("Audio extraction complete.")
|
| 33 |
-
|
| 34 |
-
return 'audio.wav'
|
| 35 |
-
|
| 36 |
-
def get_caption_from_kosmos(image_in):
|
| 37 |
-
kosmos2_client = Client("https://ydshieh-kosmos-2.hf.space/")
|
| 38 |
-
|
| 39 |
-
kosmos2_result = kosmos2_client.predict(
|
| 40 |
-
image_in, # str (filepath or URL to image) in 'Test Image' Image component
|
| 41 |
-
"Detailed", # str in 'Description Type' Radio component
|
| 42 |
-
fn_index=4
|
| 43 |
-
)
|
| 44 |
-
|
| 45 |
-
print(f"KOSMOS2 RETURNS: {kosmos2_result}")
|
| 46 |
-
|
| 47 |
-
with open(kosmos2_result[1], 'r') as f:
|
| 48 |
-
data = json.load(f)
|
| 49 |
-
|
| 50 |
-
reconstructed_sentence = []
|
| 51 |
-
for sublist in data:
|
| 52 |
-
reconstructed_sentence.append(sublist[0])
|
| 53 |
-
|
| 54 |
-
full_sentence = ' '.join(reconstructed_sentence)
|
| 55 |
-
#print(full_sentence)
|
| 56 |
-
|
| 57 |
-
# Find the pattern matching the expected format ("Describe this image in detail:" followed by optional space and then the rest)...
|
| 58 |
-
pattern = r'^Describe this image in detail:\s*(.*)$'
|
| 59 |
-
# Apply the regex pattern to extract the description text.
|
| 60 |
-
match = re.search(pattern, full_sentence)
|
| 61 |
-
if match:
|
| 62 |
-
description = match.group(1)
|
| 63 |
-
print(description)
|
| 64 |
-
else:
|
| 65 |
-
print("Unable to locate valid description.")
|
| 66 |
-
|
| 67 |
-
# Find the last occurrence of "."
|
| 68 |
-
last_period_index = description.rfind('.')
|
| 69 |
-
|
| 70 |
-
# Truncate the string up to the last period
|
| 71 |
-
truncated_caption = description[:last_period_index + 1]
|
| 72 |
-
|
| 73 |
-
# print(truncated_caption)
|
| 74 |
-
print(f"\n—\nIMAGE CAPTION: {truncated_caption}")
|
| 75 |
-
|
| 76 |
-
return truncated_caption
|
| 77 |
-
|
| 78 |
-
def get_caption(image_in):
|
| 79 |
-
client = Client("https://vikhyatk-moondream1.hf.space/")
|
| 80 |
-
result = client.predict(
|
| 81 |
-
image_in, # filepath in 'image' Image component
|
| 82 |
-
"Describe precisely the image in one sentence.", # str in 'Question' Textbox component
|
| 83 |
-
api_name="/answer_question"
|
| 84 |
-
)
|
| 85 |
-
print(result)
|
| 86 |
-
return result
|
| 87 |
-
|
| 88 |
-
def get_magnet(prompt):
|
| 89 |
-
amended_prompt = f"{prompt}"
|
| 90 |
-
print(amended_prompt)
|
| 91 |
-
client = Client("https://fffiloni-magnet.hf.space/")
|
| 92 |
-
result = client.predict(
|
| 93 |
-
"facebook/audio-magnet-medium", # Literal['facebook/magnet-small-10secs', 'facebook/magnet-medium-10secs', 'facebook/magnet-small-30secs', 'facebook/magnet-medium-30secs', 'facebook/audio-magnet-small', 'facebook/audio-magnet-medium'] in 'Model' Radio component
|
| 94 |
-
"", # str in 'Model Path (custom models)' Textbox component
|
| 95 |
-
amended_prompt, # str in 'Input Text' Textbox component
|
| 96 |
-
3, # float in 'Temperature' Number component
|
| 97 |
-
0.9, # float in 'Top-p' Number component
|
| 98 |
-
10, # float in 'Max CFG coefficient' Number component
|
| 99 |
-
1, # float in 'Min CFG coefficient' Number component
|
| 100 |
-
20, # float in 'Decoding Steps (stage 1)' Number component
|
| 101 |
-
10, # float in 'Decoding Steps (stage 2)' Number component
|
| 102 |
-
10, # float in 'Decoding Steps (stage 3)' Number component
|
| 103 |
-
10, # float in 'Decoding Steps (stage 4)' Number component
|
| 104 |
-
"prod-stride1 (new!)", # Literal['max-nonoverlap', 'prod-stride1 (new!)'] in 'Span Scoring' Radio component
|
| 105 |
-
api_name="/predict_full"
|
| 106 |
-
)
|
| 107 |
-
print(result)
|
| 108 |
-
return result[1]
|
| 109 |
-
|
| 110 |
-
def get_audioldm(prompt):
|
| 111 |
-
client = Client("https://haoheliu-audioldm2-text2audio-text2music.hf.space/")
|
| 112 |
-
result = client.predict(
|
| 113 |
-
prompt, # str in 'Input text' Textbox component
|
| 114 |
-
"Low quality. Music.", # str in 'Negative prompt' Textbox component
|
| 115 |
-
10, # int | float (numeric value between 5 and 15) in 'Duration (seconds)' Slider component
|
| 116 |
-
3.5, # int | float (numeric value between 0 and 7) in 'Guidance scale' Slider component
|
| 117 |
-
45, # int | float in 'Seed' Number component
|
| 118 |
-
3, # int | float (numeric value between 1 and 5) in 'Number waveforms to generate' Slider component
|
| 119 |
-
fn_index=1
|
| 120 |
-
)
|
| 121 |
-
print(result)
|
| 122 |
-
audio_result = extract_audio(result)
|
| 123 |
-
return audio_result
|
| 124 |
-
|
| 125 |
-
def get_audiogen(prompt):
|
| 126 |
-
client = Client("https://fffiloni-audiogen.hf.space/")
|
| 127 |
-
result = client.predict(
|
| 128 |
-
prompt,
|
| 129 |
-
10,
|
| 130 |
-
api_name="/infer"
|
| 131 |
-
)
|
| 132 |
-
return result
|
| 133 |
-
|
| 134 |
-
def infer(image_in, chosen_model):
|
| 135 |
-
caption = get_caption(image_in)
|
| 136 |
-
if chosen_model == "MAGNet" :
|
| 137 |
-
magnet_result = get_magnet(caption)
|
| 138 |
-
return magnet_result
|
| 139 |
-
elif chosen_model == "AudioLDM-2" :
|
| 140 |
-
audioldm_result = get_audioldm(caption)
|
| 141 |
-
return audioldm_result
|
| 142 |
-
elif chosen_model == "AudioGen" :
|
| 143 |
-
audiogen_result = get_audiogen(caption)
|
| 144 |
-
return audiogen_result
|
| 145 |
-
|
| 146 |
-
css="""
|
| 147 |
-
#col-container{
|
| 148 |
-
margin: 0 auto;
|
| 149 |
-
max-width: 800px;
|
| 150 |
-
}
|
| 151 |
-
"""
|
| 152 |
|
| 153 |
def show_search_results(query):
|
| 154 |
images_urls = search_pexels_images(query)
|
|
@@ -167,30 +32,3 @@ with gr.Blocks() as app:
|
|
| 167 |
outputs=images_output
|
| 168 |
)
|
| 169 |
app.launch(debug=True)
|
| 170 |
-
|
| 171 |
-
with gr.Blocks(css=css) as demo:
|
| 172 |
-
with gr.Column(elem_id="col-container"):
|
| 173 |
-
gr.HTML("""
|
| 174 |
-
<h2 style="text-align: center;">
|
| 175 |
-
Image to SFX
|
| 176 |
-
</h2>
|
| 177 |
-
<p style="text-align: center;">
|
| 178 |
-
Compare MAGNet, AudioLDM2 and AudioGen sound effects generation from image caption.
|
| 179 |
-
</p>
|
| 180 |
-
""")
|
| 181 |
-
|
| 182 |
-
with gr.Column():
|
| 183 |
-
image_in = gr.Image(sources=["upload"], type="filepath", label="Image input", value="oiseau.png")
|
| 184 |
-
with gr.Row():
|
| 185 |
-
chosen_model = gr.Radio(label="Choose a model", choices=["MAGNet", "AudioLDM-2", "AudioGen"], value="AudioLDM-2")
|
| 186 |
-
submit_btn = gr.Button("Submit")
|
| 187 |
-
with gr.Column():
|
| 188 |
-
audio_o = gr.Audio(label="Audio output")
|
| 189 |
-
|
| 190 |
-
submit_btn.click(
|
| 191 |
-
fn=infer,
|
| 192 |
-
inputs=[image_in, chosen_model],
|
| 193 |
-
outputs=[audio_o]
|
| 194 |
-
)
|
| 195 |
-
|
| 196 |
-
demo.queue(max_size=10).launch(debug=True)
|
|
|
|
| 1 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import requests
|
| 3 |
|
| 4 |
def search_pexels_images(query):
|
|
|
|
| 14 |
images_urls = [photo['src']['medium'] for photo in data['photos']]
|
| 15 |
return images_urls
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
def show_search_results(query):
|
| 19 |
images_urls = search_pexels_images(query)
|
|
|
|
| 32 |
outputs=images_output
|
| 33 |
)
|
| 34 |
app.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|