import os import re import gradio as gr import asyncio import time import tempfile from huggingface_hub import InferenceClient from gtts import gTTS import speech_recognition as sr # ... async def generate_audio(prompt): # 음성 인식 r = sr.Recognizer() with sr.Microphone() as source: print("Speak:") audio = r.listen(source) try: text = r.recognize_google(audio) except: return "Could not understand audio" # LLM 모델에 입력 generate_kwargs = dict( temperature=0.6, max_new_tokens=256, top_p=0.95, repetition_penalty=1, do_sample=True, seed=42, ) formatted_prompt = system_instructions1 + text + "[JARVIS]" stream = client1.text_generation( formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True) output = "" for response in stream: output += response.token.text # 음성 출력 tts = gTTS(output, lang="ko") with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file: tmp_path = tmp_file.name tts.save(tmp_path) return tmp_path # ... with gr.Blocks(css="style.css") as demo: with gr.Row(): user_input = gr.Textbox(label="Prompt", value="What is Wikipedia") input_text = gr.Textbox(label="Input Text", elem_id="important") output_audio = gr.Audio(label="JARVIS", type="filepath", interactive=False, autoplay=True, elem_classes="audio") translate_btn = gr.Button("Response") with gr.Row(): translate_btn.click(fn=generate1, inputs=user_input, outputs=output_audio, api_name="translate") translate_btn.click(fn=generate_audio, inputs=user_input, outputs=output_audio, api_name="generate_audio") with gr.Row(): gr.Markdown(MORE) if __name__ == "__main__": demo.queue(max_size=200).launch()