File size: 25,936 Bytes
684943d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
import argparse
import os
import random

import cv2
import imageio
import matplotlib.pyplot as plt
import numpy as np
import torch
from loguru import logger
from PIL import Image
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
from tqdm import tqdm

# use bfloat16 for the entire notebook
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()

if torch.cuda.get_device_properties(0).major >= 8:
    # turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
    torch.backends.cuda.matmul.allow_tf32 = True
    torch.backends.cudnn.allow_tf32 = True

from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator
from sam2.build_sam import build_sam2, build_sam2_video_predictor


def show_anns(anns, borders=True):
    if len(anns) == 0:
        return
    sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
    ax = plt.gca()
    ax.set_autoscale_on(False)

    img = np.ones((sorted_anns[0]['segmentation'].shape[0], sorted_anns[0]['segmentation'].shape[1], 4))
    img[:,:,3] = 0
    for ann in sorted_anns:
        m = ann['segmentation']
        color_mask = np.concatenate([np.random.random(3), [0.5]])
        img[m] = color_mask 
        if borders:
            import cv2
            contours, _ = cv2.findContours(m.astype(np.uint8),cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) 
            # Try to smooth contours
            contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours]
            cv2.drawContours(img, contours, -1, (0,0,1,0.4), thickness=1) 

    ax.imshow(img)


def mask_nms(masks, scores, iou_thr=0.7, score_thr=0.1, inner_thr=0.2, **kwargs):
    """
    Perform mask non-maximum suppression (NMS) on a set of masks based on their scores.
    
    Args:
        masks (torch.Tensor): has shape (num_masks, H, W)
        scores (torch.Tensor): The scores of the masks, has shape (num_masks,)
        iou_thr (float, optional): The threshold for IoU.
        score_thr (float, optional): The threshold for the mask scores.
        inner_thr (float, optional): The threshold for the overlap rate.
        **kwargs: Additional keyword arguments.
    Returns:
        selected_idx (torch.Tensor): A tensor representing the selected indices of the masks after NMS.
    """
    scores, idx = scores.sort(0, descending=True)
    num_masks = idx.shape[0]
    
    masks_ord = masks[idx.view(-1), :]
    masks_area = torch.sum(masks_ord, dim=(1, 2), dtype=torch.float)

    mask_chunk_size = 20
    
    mask_chunks = masks_ord.split(mask_chunk_size, dim=0)
    area_chunks = masks_area.split(mask_chunk_size, dim=0)

    iou_matrix = []
    inner_iou_matrix = []

    for i_areas, i_chunk in zip(area_chunks, mask_chunks):
        row_iou_matrix = []
        row_inner_iou_matrix = []
        for j_areas, j_chunk in zip(area_chunks, mask_chunks):
            intersection = torch.logical_and(i_chunk.unsqueeze(1), j_chunk.unsqueeze(0)).sum(dim=(-1, -2))
            union = torch.logical_or(i_chunk.unsqueeze(1), j_chunk.unsqueeze(0)).sum(dim=(-1, -2))
            local_iou_mat = intersection / union 
            row_iou_matrix.append(local_iou_mat)

            row_inter_mat = intersection / i_areas[:, None]
            col_inter_mat = intersection / j_areas[None, :]

            inter = torch.logical_and(row_inter_mat < 0.5, col_inter_mat >= 0.85)

            local_inner_iou_mat = torch.zeros((len(i_areas), len(j_areas)))
            local_inner_iou_mat[inter] = 1 - row_inter_mat[inter] * col_inter_mat[inter]
            row_inner_iou_matrix.append(local_inner_iou_mat)

        row_iou_matrix = torch.cat(row_iou_matrix, dim=1)
        row_inner_iou_matrix = torch.cat(row_inner_iou_matrix, dim=1)
        iou_matrix.append(row_iou_matrix)
        inner_iou_matrix.append(row_inner_iou_matrix)
    iou_matrix = torch.cat(iou_matrix, dim=0)
    inner_iou_matrix = torch.cat(inner_iou_matrix, dim=0)

    iou_matrix.triu_(diagonal=1)
    iou_max, _ = iou_matrix.max(dim=0)
    inner_iou_matrix_u = torch.triu(inner_iou_matrix, diagonal=1)
    inner_iou_max_u, _ = inner_iou_matrix_u.max(dim=0)
    inner_iou_matrix_l = torch.tril(inner_iou_matrix, diagonal=1)
    inner_iou_max_l, _ = inner_iou_matrix_l.max(dim=0)
    
    keep = iou_max <= iou_thr
    keep_conf = scores > score_thr
    keep_inner_u = inner_iou_max_u <= 1 - inner_thr
    keep_inner_l = inner_iou_max_l <= 1 - inner_thr
    
    if keep_conf.sum() == 0:
        index = scores.topk(3).indices
        keep_conf[index, 0] = True
    if keep_inner_u.sum() == 0:
        index = scores.topk(3).indices
        keep_inner_u[index, 0] = True
    if keep_inner_l.sum() == 0:
        index = scores.topk(3).indices
        keep_inner_l[index, 0] = True
    keep *= keep_conf
    keep *= keep_inner_u
    keep *= keep_inner_l

    selected_idx = idx[keep]
    return selected_idx


def filter(keep: torch.Tensor, masks_result) -> None:
    keep = keep.int().cpu().numpy()
    result_keep = []
    for i, m in enumerate(masks_result):
        if i in keep: result_keep.append(m)
    return result_keep


def masks_update(*args, **kwargs):
    # remove redundant masks based on the scores and overlap rate between masks
    masks_new = ()
    for masks_lvl in (args):
        if isinstance(masks_lvl, tuple):
            masks_lvl = masks_lvl[0]  # If it's a tuple, take the first element
        if len(masks_lvl) == 0:
            masks_new += (masks_lvl,)
            continue
            
        # Check if masks_lvl is a list of dictionaries
        if isinstance(masks_lvl[0], dict):
            seg_pred = torch.from_numpy(np.stack([m['segmentation'] for m in masks_lvl], axis=0))
            iou_pred = torch.from_numpy(np.stack([m['predicted_iou'] for m in masks_lvl], axis=0))
            stability = torch.from_numpy(np.stack([m['stability_score'] for m in masks_lvl], axis=0))
        else:
            # If it's a direct list of masks, use them directly
            seg_pred = torch.from_numpy(np.stack(masks_lvl, axis=0))
            # Create default values for cases without iou and stability
            iou_pred = torch.ones(len(masks_lvl))
            stability = torch.ones(len(masks_lvl))

        scores = stability * iou_pred
        keep_mask_nms = mask_nms(seg_pred, scores, **kwargs)
        masks_lvl = filter(keep_mask_nms, masks_lvl)
        masks_new += (masks_lvl,)
    return masks_new

def show_mask(mask, ax, obj_id=None, random_color=False):
    if random_color:
        color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
    else:
        cmap = plt.get_cmap("tab20")
        cmap_idx = 0 if obj_id is None else obj_id
        color = np.array([*cmap(cmap_idx)[:3], 0.6])
    h, w = mask.shape[-2:]
    mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    ax.imshow(mask_image)

def save_mask(mask,frame_idx,save_dir):
    image_array = (mask * 255).astype(np.uint8)
    # Create image object
    image = Image.fromarray(image_array[0])

    # Save image
    image.save(os.path.join(save_dir,f'{frame_idx:03}.png'))

def save_masks(mask_list,frame_idx,save_dir):
    os.makedirs(save_dir,exist_ok=True)
    if len(mask_list[0].shape) == 3:
        # Calculate dimensions for concatenated image
        total_width = mask_list[0].shape[2] * len(mask_list)
        max_height = mask_list[0].shape[1]
        # Create large image
        final_image = Image.new('RGB', (total_width, max_height))
        for i, img in enumerate(mask_list):
            img = Image.fromarray((img[0] * 255).astype(np.uint8)).convert("RGB")
            final_image.paste(img, (i * img.width, 0))
        final_image.save(os.path.join(save_dir,f"mask_{frame_idx:03}.png"))
    else:
        # Calculate dimensions for concatenated image
        total_width = mask_list[0].shape[1] * len(mask_list)
        max_height = mask_list[0].shape[0]
        # Create large image
        final_image = Image.new('RGB', (total_width, max_height))
        for i, img in enumerate(mask_list):
            img = Image.fromarray((img * 255).astype(np.uint8)).convert("RGB")
            final_image.paste(img, (i * img.width, 0))
        final_image.save(os.path.join(save_dir,f"mask_{frame_idx:03}.png"))

def save_masks_npy(mask_list,frame_idx,save_dir):
    np.save(os.path.join(save_dir,f"mask_{frame_idx:03}.npy"),np.array(mask_list))
    
def show_points(coords, labels, ax, marker_size=200):
    pos_points = coords[labels==1]
    neg_points = coords[labels==0]
    ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
    ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)  

def make_enlarge_bbox(origin_bbox, max_width,max_height,ratio):
    width = origin_bbox[2]
    height = origin_bbox[3]
    new_box = [max(origin_bbox[0]-width*(ratio-1)/2,0),max(origin_bbox[1]-height*(ratio-1)/2,0)]
    new_box.append(min(width*ratio,max_width-new_box[0]))
    new_box.append(min(height*ratio,max_height-new_box[1]))
    return new_box

def sample_points(masks, enlarge_bbox,positive_num=1,negtive_num=40):
    ex, ey, ewidth, eheight = enlarge_bbox
    positive_count = positive_num
    negtive_count = negtive_num
    output_points = []
    while True:
        x = int(np.random.uniform(ex, ex + ewidth))
        y = int(np.random.uniform(ey, ey + eheight))
        if masks[y][x]==True and positive_count>0:
            output_points.append((x,y,1))
            positive_count-=1
        elif masks[y][x]==False and negtive_count>0:
            output_points.append((x,y,0))
            negtive_count-=1
        if positive_count == 0 and negtive_count == 0:
            break

    return output_points

def sample_points_from_mask(mask):
    # Get indices of all True values
    true_indices = np.argwhere(mask)

    # Check if there are any True values
    if true_indices.size == 0:
        raise ValueError("The mask does not contain any True values.")

    # Randomly select a point from True value indices
    random_index = np.random.choice(len(true_indices))
    sample_point = true_indices[random_index]

    return tuple(sample_point)

def search_new_obj(masks_from_prev, mask_list,other_masks_list=None,mask_ratio_thresh=0,ratio=0.5, area_threash = 5000):
    new_mask_list = []

    # Calculate mask_none, representing areas not included in any previous masks
    mask_none = ~masks_from_prev[0].copy()[0]
    for prev_mask in masks_from_prev[1:]:
        mask_none &= ~prev_mask[0]

    for mask in mask_list:
        seg = mask['segmentation']
        if (mask_none & seg).sum()/seg.sum() > ratio and seg.sum() > area_threash:
            new_mask_list.append(mask)
    
    for mask in new_mask_list:
        mask_none &= ~mask['segmentation']
    logger.info(len(new_mask_list))
    logger.info("now ratio:",mask_none.sum() / (mask_none.shape[0] * mask_none.shape[1]) )
    logger.info("expected ratios:",mask_ratio_thresh)
    if other_masks_list is not None:
        for mask in other_masks_list:
            if mask_none.sum() / (mask_none.shape[0] * mask_none.shape[1]) > mask_ratio_thresh: # Still a lot of gaps, greater than current thresh
                seg = mask['segmentation']
                if (mask_none & seg).sum()/seg.sum() > ratio and seg.sum() > area_threash:
                    new_mask_list.append(mask)
                    mask_none &= ~seg
            else:
                break
    logger.info(len(new_mask_list))

    return new_mask_list

def get_bbox_from_mask(mask):
    # Get row and column indices of non-zero elements
    rows = np.any(mask, axis=1)
    cols = np.any(mask, axis=0)
    
    # Find min and max indices of non-zero rows and columns
    ymin, ymax = np.where(rows)[0][[0, -1]]
    xmin, xmax = np.where(cols)[0][[0, -1]]
    
    # Calculate width and height
    width = xmax - xmin + 1
    height = ymax - ymin + 1
    
    return xmin, ymin, width, height

def cal_no_mask_area_ratio(out_mask_list):
    h = out_mask_list[0].shape[1]
    w = out_mask_list[0].shape[2]
    mask_none = ~out_mask_list[0].copy()
    for prev_mask in out_mask_list[1:]:
        mask_none &= ~prev_mask
    return(mask_none.sum() / (h * w))


class Prompts:
    def __init__(self,bs:int):
        self.batch_size = bs
        self.prompts = {}
        self.obj_list = []
        self.key_frame_list = []
        self.key_frame_obj_begin_list = []

    def add(self,obj_id,frame_id,mask):
        if obj_id not in self.obj_list:
            new_obj = True
            self.prompts[obj_id] = []
            self.obj_list.append(obj_id)
        else:
            new_obj = False
        self.prompts[obj_id].append((frame_id,mask))
        if frame_id not in self.key_frame_list and new_obj:
            # import ipdb; ipdb.set_trace()
            self.key_frame_list.append(frame_id)
            self.key_frame_obj_begin_list.append(obj_id)
            logger.info("key_frame_obj_begin_list:",self.key_frame_obj_begin_list)
    
    def get_obj_num(self):
        return len(self.obj_list)
    
    def __len__(self):
        if self.obj_list % self.batch_size == 0:
            return len(self.obj_list) // self.batch_size
        else:
            return len(self.obj_list) // self.batch_size +1
    
    def __iter__(self):
        # self.batch_index = 0
        self.start_idx = 0
        self.iter_frameindex = 0
        return self

    def __next__(self):
        if self.start_idx < len(self.obj_list):
            if self.iter_frameindex == len(self.key_frame_list)-1:
                end_idx = min(self.start_idx+self.batch_size, len(self.obj_list))
            else:
                if self.start_idx+self.batch_size < self.key_frame_obj_begin_list[self.iter_frameindex+1]:
                    end_idx = self.start_idx+self.batch_size
                else:
                    end_idx =  self.key_frame_obj_begin_list[self.iter_frameindex+1]
                    self.iter_frameindex+=1
                # end_idx = min(self.start_idx+self.batch_size, self.key_frame_obj_begin_list[self.iter_frameindex+1])
            batch_keys = self.obj_list[self.start_idx:end_idx]
            batch_prompts = {key: self.prompts[key] for key in batch_keys}
            self.start_idx = end_idx
            return batch_prompts
        # if self.batch_index * self.batch_size < len(self.obj_list):
        #     start_idx = self.batch_index * self.batch_size
        #     end_idx = min(start_idx + self.batch_size, len(self.obj_list))
        #     batch_keys = self.obj_list[start_idx:end_idx]
        #     batch_prompts = {key: self.prompts[key] for key in batch_keys}
        #     self.batch_index += 1
        #     return batch_prompts
        else:
            raise StopIteration
        
def get_video_segments(prompts_loader,predictor,inference_state,final_output=False):

    video_segments = {}
    for batch_prompts in tqdm(prompts_loader,desc="processing prompts\n"):
        predictor.reset_state(inference_state)
        for id, prompt_list in batch_prompts.items():
            for prompt in prompt_list:
                # import ipdb; ipdb.set_trace()
                _, out_obj_ids, out_mask_logits = predictor.add_new_mask(
                    inference_state=inference_state,
                    frame_idx=prompt[0],
                    obj_id=id,
                    mask=prompt[1]
                )
        # start_frame_idx = 0 if final_output else None
        for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state):
            if out_frame_idx not in video_segments:
                video_segments[out_frame_idx] = { }
            for i, out_obj_id in enumerate(out_obj_ids):
                video_segments[out_frame_idx][out_obj_id]= (out_mask_logits[i] > 0.0).cpu().numpy()
        
        if final_output:
            for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state,reverse=True):
                for i, out_obj_id in enumerate(out_obj_ids):
                    video_segments[out_frame_idx][out_obj_id]= (out_mask_logits[i] > 0.0).cpu().numpy()
    return video_segments

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument("--video_path",type=str,required=True)
    parser.add_argument("--output_dir",type=str,required=True)
    parser.add_argument("--level",choices=['default','small','middle','large'])
    parser.add_argument("--batch_size",type=int,default=20)
    parser.add_argument("--sam1_checkpoint",type=str,default="/home/lff/bigdata1/cjw/checkpoints/sam/sam_vit_h_4b8939.pth")
    parser.add_argument("--sam2_checkpoint",type=str,default="/home/lff/bigdata1/cjw/checkpoints/sam2/sam2_hiera_large.pt")
    parser.add_argument("--detect_stride",type=int,default=10)
    parser.add_argument("--use_other_level",type=int,default=1)
    parser.add_argument("--postnms",type=int,default=1)
    parser.add_argument("--pred_iou_thresh",type=float,default=0.7)
    parser.add_argument("--box_nms_thresh",type=float,default=0.7)
    parser.add_argument("--stability_score_thresh",type=float,default=0.85)
    parser.add_argument("--reverse", action="store_true")
    
    level_dict = {
        "default": 0,
        "small": 1, 
        "middle": 2,
        "large": 3
    }
    args = parser.parse_args()
    logger.add(os.path.join(args.output_dir,f'{args.level}.log'), rotation="500 MB")
    logger.info(args)
    video_dir = args.video_path
    level = args.level
    base_dir = args.output_dir

    ##### load Sam2 and Sam1 Model #####
    sam2_checkpoint = args.sam2_checkpoint
    model_cfg = "sam2_hiera_l.yaml"
    predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)

    sam2 = build_sam2(model_cfg, sam2_checkpoint, device='cuda', apply_postprocessing=False)

    sam_ckpt_path = args.sam1_checkpoint

    sam = sam_model_registry["vit_h"](checkpoint=sam_ckpt_path).to('cuda')
    mask_generator = SamAutomaticMaskGenerator(
        model=sam,
        points_per_side=32,
        pred_iou_thresh=args.pred_iou_thresh, 
        box_nms_thresh=args.box_nms_thresh, 
        stability_score_thresh=args.stability_score_thresh, 
        crop_n_layers=1,
        crop_n_points_downscale_factor=1,
        min_mask_region_area=100,
    )
    # scan all the JPEG frame names in this directory
    frame_names = [
        p for p in os.listdir(video_dir)
        if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG", ".png"]
    ]
    try:
        frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]), reverse=args.reverse)
    except:
        frame_names.sort(key=lambda p: os.path.splitext(p)[0], reverse=args.reverse)

    now_frame = 0
    inference_state = predictor.init_state(video_path=video_dir)
    masks_from_prev = []
    sum_id = 0 # Record total number of objects

    prompts_loader = Prompts(bs=args.batch_size)  # hold all the clicks we add for visualization
    
    while True:
        logger.info(f"frame: {now_frame}")
        
        sum_id = prompts_loader.get_obj_num()
        image_path = os.path.join(video_dir,frame_names[now_frame])
        image = cv2.imread(image_path)
        
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        # resize if the input is too large:
        orig_h, orig_w = image.shape[:2]
        if orig_h > 1080:
            logger.info("Resizing original image to 1080P...")
            scale = 1080 / orig_h
            h = int(orig_h * scale)
            w = int(orig_w * scale)
            image = cv2.resize(image, (w, h))

        # Generate only large masks
        # masks_l = mask_generator.generate_l(image)
        all_masks = mask_generator.generate(image)
        masks = all_masks[level_dict[args.level]]
        # masks_l = mask_generator.generate(image)
        
        if args.postnms:
        #     # Pass masks_l directly, no need to wrap in tuple
        #     # masks_l = masks_update(masks_l, iou_thr=0.8, score_thr=0.7, inner_thr=0.5)[0]
            masks = masks_update(masks, iou_thr=0.8, score_thr=0.7, inner_thr=0.5)[0]

        # Use large level masks
        # masks = masks_l
        other_masks = None
        
        if not args.use_other_level:
            other_masks = None

        if now_frame == 0: # first frame
            ann_obj_id_list = range(len(masks))
            for ann_obj_id in tqdm(ann_obj_id_list):
                seg = masks[ann_obj_id]['segmentation']
                prompts_loader.add(ann_obj_id,0,seg)
        else:  
            new_mask_list = search_new_obj(masks_from_prev, masks, other_masks,mask_ratio_thresh)
            logger.info(f"number of new obj: {len(new_mask_list)}")

            for id,mask in enumerate(masks_from_prev):
                if mask.sum() == 0:
                    continue
                prompts_loader.add(id,now_frame,mask[0])

            for i in range(len(new_mask_list)):
                new_mask = new_mask_list[i]['segmentation']
                prompts_loader.add(sum_id+i,now_frame,new_mask)

        logger.info(f"obj num: {prompts_loader.get_obj_num()}")

        if now_frame==0 or len(new_mask_list)!=0:
            video_segments = get_video_segments(prompts_loader,predictor,inference_state)
        
        vis_frame_stride = args.detect_stride
        max_area_no_mask = (0,-1)
        for out_frame_idx in tqdm(range(0, len(frame_names), vis_frame_stride)):
            if out_frame_idx < now_frame:
                continue
            
            out_mask_list = []
            for out_obj_id, out_mask in video_segments[out_frame_idx].items():
                out_mask_list.append(out_mask)
            
            no_mask_ratio = cal_no_mask_area_ratio(out_mask_list)
            if now_frame == out_frame_idx:
                mask_ratio_thresh = no_mask_ratio
                logger.info(f"mask_ratio_thresh: {mask_ratio_thresh}")

            if no_mask_ratio > mask_ratio_thresh + 0.01 and out_frame_idx > now_frame:
                masks_from_prev = out_mask_list
                max_area_no_mask = (no_mask_ratio, out_frame_idx)
                logger.info(max_area_no_mask)
                break
        if max_area_no_mask[1] == -1:
            break
        logger.info("max_area_no_mask:", max_area_no_mask)
        now_frame = max_area_no_mask[1]

    ###### Final output ######
    save_dir = os.path.join(base_dir,level,"final-output")
    os.makedirs(save_dir, exist_ok=True)
    
    video_segments = get_video_segments(prompts_loader,predictor,inference_state,final_output=True)
    for out_frame_idx in tqdm(range(0, len(frame_names), 1)):
        out_mask_list = []
        for out_obj_id, out_mask in video_segments[out_frame_idx].items():
            out_mask_list.append(out_mask)

        no_mask_ratio = cal_no_mask_area_ratio(out_mask_list)
        logger.info(no_mask_ratio)

        save_masks(out_mask_list, out_frame_idx,save_dir)
        save_masks_npy(out_mask_list, out_frame_idx,save_dir)

    ###### Generate Visualization Frames ######
    logger.info("Start generating visualization frames...")
    vis_save_dir = os.path.join(base_dir,level,'visualization','full-mask-npy')
    os.makedirs(vis_save_dir,exist_ok=True)
    frame_save_dir = os.path.join(base_dir,level,'visualization','frames')
    os.makedirs(frame_save_dir, exist_ok=True)

    # Read all npy files
    npy_name_list = []
    for name in os.listdir(save_dir):
        if 'npy' in name:
            npy_name_list.append(name)
    npy_name_list.sort()
    logger.info(f"Found {len(npy_name_list)} npy files")

    npy_list = [np.load(os.path.join(save_dir,name)) for name in npy_name_list]
    image_list = [Image.open(os.path.join(video_dir,name)) for name in frame_names]

    assert len(npy_list) == len(image_list), "Number of npy files does not match number of images"
    logger.info(f"Processing {len(npy_list)} frames in total")

    # Generate random colors
    def generate_random_colors(num_colors):
        colors = []
        for _ in range(num_colors):
            reroll = True
            iter_cnt = 0
            while reroll and iter_cnt < 100:
                iter_cnt += 1
                reroll = False
                color = tuple(random.randint(1, 255) for _ in range(3))
                for selected_color in colors:
                    if np.linalg.norm(np.array(color) - np.array(selected_color)) < 70:
                        reroll = True
                        break
            colors.append(color)
        return colors

    num_masks = max(len(masks) for masks in npy_list)
    colors = generate_random_colors(num_masks)
    post_colors = [(0, 0, 0)] + colors
    post_colors = np.array(post_colors) # [num_masks, 3]
    np.save(os.path.join(base_dir, "colors.npy"), post_colors)

    # Only process first and last frames
    # frames_to_process = [0, -1]  # Indices for first and last frames
    
    for frame_idx in range(len(frame_names)):
    # for frame_idx in frames_to_process:
        masks = npy_list[frame_idx]
        image = image_list[frame_idx]
        
        image_np = np.array(image)
        mask_combined = np.zeros_like(image_np, dtype=np.uint8)

        for mask_id, mask in enumerate(masks):
            mask = mask.squeeze(0)
            mask_area = mask > 0
            mask_combined[mask_area, :] = colors[mask_id]

        # Blend original image with colored mask
        mask_combined = np.clip(mask_combined, 0, 255)

        # blended_image = cv2.addWeighted(image_np, 0.7, mask_combined, 0.3, 0)
        blended_image = mask_combined

        # change the save path
        frame_name = frame_names[frame_idx]
        frame_save_dir = base_dir
        output_path = os.path.join(frame_save_dir, frame_name)
        Image.fromarray(blended_image).save(output_path)
        logger.info(f"Frame saved to: {output_path}")