Spaces:
Running
Running
File size: 25,936 Bytes
684943d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 |
import argparse
import os
import random
import cv2
import imageio
import matplotlib.pyplot as plt
import numpy as np
import torch
from loguru import logger
from PIL import Image
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
from tqdm import tqdm
# use bfloat16 for the entire notebook
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
if torch.cuda.get_device_properties(0).major >= 8:
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator
from sam2.build_sam import build_sam2, build_sam2_video_predictor
def show_anns(anns, borders=True):
if len(anns) == 0:
return
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
ax = plt.gca()
ax.set_autoscale_on(False)
img = np.ones((sorted_anns[0]['segmentation'].shape[0], sorted_anns[0]['segmentation'].shape[1], 4))
img[:,:,3] = 0
for ann in sorted_anns:
m = ann['segmentation']
color_mask = np.concatenate([np.random.random(3), [0.5]])
img[m] = color_mask
if borders:
import cv2
contours, _ = cv2.findContours(m.astype(np.uint8),cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
# Try to smooth contours
contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours]
cv2.drawContours(img, contours, -1, (0,0,1,0.4), thickness=1)
ax.imshow(img)
def mask_nms(masks, scores, iou_thr=0.7, score_thr=0.1, inner_thr=0.2, **kwargs):
"""
Perform mask non-maximum suppression (NMS) on a set of masks based on their scores.
Args:
masks (torch.Tensor): has shape (num_masks, H, W)
scores (torch.Tensor): The scores of the masks, has shape (num_masks,)
iou_thr (float, optional): The threshold for IoU.
score_thr (float, optional): The threshold for the mask scores.
inner_thr (float, optional): The threshold for the overlap rate.
**kwargs: Additional keyword arguments.
Returns:
selected_idx (torch.Tensor): A tensor representing the selected indices of the masks after NMS.
"""
scores, idx = scores.sort(0, descending=True)
num_masks = idx.shape[0]
masks_ord = masks[idx.view(-1), :]
masks_area = torch.sum(masks_ord, dim=(1, 2), dtype=torch.float)
mask_chunk_size = 20
mask_chunks = masks_ord.split(mask_chunk_size, dim=0)
area_chunks = masks_area.split(mask_chunk_size, dim=0)
iou_matrix = []
inner_iou_matrix = []
for i_areas, i_chunk in zip(area_chunks, mask_chunks):
row_iou_matrix = []
row_inner_iou_matrix = []
for j_areas, j_chunk in zip(area_chunks, mask_chunks):
intersection = torch.logical_and(i_chunk.unsqueeze(1), j_chunk.unsqueeze(0)).sum(dim=(-1, -2))
union = torch.logical_or(i_chunk.unsqueeze(1), j_chunk.unsqueeze(0)).sum(dim=(-1, -2))
local_iou_mat = intersection / union
row_iou_matrix.append(local_iou_mat)
row_inter_mat = intersection / i_areas[:, None]
col_inter_mat = intersection / j_areas[None, :]
inter = torch.logical_and(row_inter_mat < 0.5, col_inter_mat >= 0.85)
local_inner_iou_mat = torch.zeros((len(i_areas), len(j_areas)))
local_inner_iou_mat[inter] = 1 - row_inter_mat[inter] * col_inter_mat[inter]
row_inner_iou_matrix.append(local_inner_iou_mat)
row_iou_matrix = torch.cat(row_iou_matrix, dim=1)
row_inner_iou_matrix = torch.cat(row_inner_iou_matrix, dim=1)
iou_matrix.append(row_iou_matrix)
inner_iou_matrix.append(row_inner_iou_matrix)
iou_matrix = torch.cat(iou_matrix, dim=0)
inner_iou_matrix = torch.cat(inner_iou_matrix, dim=0)
iou_matrix.triu_(diagonal=1)
iou_max, _ = iou_matrix.max(dim=0)
inner_iou_matrix_u = torch.triu(inner_iou_matrix, diagonal=1)
inner_iou_max_u, _ = inner_iou_matrix_u.max(dim=0)
inner_iou_matrix_l = torch.tril(inner_iou_matrix, diagonal=1)
inner_iou_max_l, _ = inner_iou_matrix_l.max(dim=0)
keep = iou_max <= iou_thr
keep_conf = scores > score_thr
keep_inner_u = inner_iou_max_u <= 1 - inner_thr
keep_inner_l = inner_iou_max_l <= 1 - inner_thr
if keep_conf.sum() == 0:
index = scores.topk(3).indices
keep_conf[index, 0] = True
if keep_inner_u.sum() == 0:
index = scores.topk(3).indices
keep_inner_u[index, 0] = True
if keep_inner_l.sum() == 0:
index = scores.topk(3).indices
keep_inner_l[index, 0] = True
keep *= keep_conf
keep *= keep_inner_u
keep *= keep_inner_l
selected_idx = idx[keep]
return selected_idx
def filter(keep: torch.Tensor, masks_result) -> None:
keep = keep.int().cpu().numpy()
result_keep = []
for i, m in enumerate(masks_result):
if i in keep: result_keep.append(m)
return result_keep
def masks_update(*args, **kwargs):
# remove redundant masks based on the scores and overlap rate between masks
masks_new = ()
for masks_lvl in (args):
if isinstance(masks_lvl, tuple):
masks_lvl = masks_lvl[0] # If it's a tuple, take the first element
if len(masks_lvl) == 0:
masks_new += (masks_lvl,)
continue
# Check if masks_lvl is a list of dictionaries
if isinstance(masks_lvl[0], dict):
seg_pred = torch.from_numpy(np.stack([m['segmentation'] for m in masks_lvl], axis=0))
iou_pred = torch.from_numpy(np.stack([m['predicted_iou'] for m in masks_lvl], axis=0))
stability = torch.from_numpy(np.stack([m['stability_score'] for m in masks_lvl], axis=0))
else:
# If it's a direct list of masks, use them directly
seg_pred = torch.from_numpy(np.stack(masks_lvl, axis=0))
# Create default values for cases without iou and stability
iou_pred = torch.ones(len(masks_lvl))
stability = torch.ones(len(masks_lvl))
scores = stability * iou_pred
keep_mask_nms = mask_nms(seg_pred, scores, **kwargs)
masks_lvl = filter(keep_mask_nms, masks_lvl)
masks_new += (masks_lvl,)
return masks_new
def show_mask(mask, ax, obj_id=None, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
cmap = plt.get_cmap("tab20")
cmap_idx = 0 if obj_id is None else obj_id
color = np.array([*cmap(cmap_idx)[:3], 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def save_mask(mask,frame_idx,save_dir):
image_array = (mask * 255).astype(np.uint8)
# Create image object
image = Image.fromarray(image_array[0])
# Save image
image.save(os.path.join(save_dir,f'{frame_idx:03}.png'))
def save_masks(mask_list,frame_idx,save_dir):
os.makedirs(save_dir,exist_ok=True)
if len(mask_list[0].shape) == 3:
# Calculate dimensions for concatenated image
total_width = mask_list[0].shape[2] * len(mask_list)
max_height = mask_list[0].shape[1]
# Create large image
final_image = Image.new('RGB', (total_width, max_height))
for i, img in enumerate(mask_list):
img = Image.fromarray((img[0] * 255).astype(np.uint8)).convert("RGB")
final_image.paste(img, (i * img.width, 0))
final_image.save(os.path.join(save_dir,f"mask_{frame_idx:03}.png"))
else:
# Calculate dimensions for concatenated image
total_width = mask_list[0].shape[1] * len(mask_list)
max_height = mask_list[0].shape[0]
# Create large image
final_image = Image.new('RGB', (total_width, max_height))
for i, img in enumerate(mask_list):
img = Image.fromarray((img * 255).astype(np.uint8)).convert("RGB")
final_image.paste(img, (i * img.width, 0))
final_image.save(os.path.join(save_dir,f"mask_{frame_idx:03}.png"))
def save_masks_npy(mask_list,frame_idx,save_dir):
np.save(os.path.join(save_dir,f"mask_{frame_idx:03}.npy"),np.array(mask_list))
def show_points(coords, labels, ax, marker_size=200):
pos_points = coords[labels==1]
neg_points = coords[labels==0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
def make_enlarge_bbox(origin_bbox, max_width,max_height,ratio):
width = origin_bbox[2]
height = origin_bbox[3]
new_box = [max(origin_bbox[0]-width*(ratio-1)/2,0),max(origin_bbox[1]-height*(ratio-1)/2,0)]
new_box.append(min(width*ratio,max_width-new_box[0]))
new_box.append(min(height*ratio,max_height-new_box[1]))
return new_box
def sample_points(masks, enlarge_bbox,positive_num=1,negtive_num=40):
ex, ey, ewidth, eheight = enlarge_bbox
positive_count = positive_num
negtive_count = negtive_num
output_points = []
while True:
x = int(np.random.uniform(ex, ex + ewidth))
y = int(np.random.uniform(ey, ey + eheight))
if masks[y][x]==True and positive_count>0:
output_points.append((x,y,1))
positive_count-=1
elif masks[y][x]==False and negtive_count>0:
output_points.append((x,y,0))
negtive_count-=1
if positive_count == 0 and negtive_count == 0:
break
return output_points
def sample_points_from_mask(mask):
# Get indices of all True values
true_indices = np.argwhere(mask)
# Check if there are any True values
if true_indices.size == 0:
raise ValueError("The mask does not contain any True values.")
# Randomly select a point from True value indices
random_index = np.random.choice(len(true_indices))
sample_point = true_indices[random_index]
return tuple(sample_point)
def search_new_obj(masks_from_prev, mask_list,other_masks_list=None,mask_ratio_thresh=0,ratio=0.5, area_threash = 5000):
new_mask_list = []
# Calculate mask_none, representing areas not included in any previous masks
mask_none = ~masks_from_prev[0].copy()[0]
for prev_mask in masks_from_prev[1:]:
mask_none &= ~prev_mask[0]
for mask in mask_list:
seg = mask['segmentation']
if (mask_none & seg).sum()/seg.sum() > ratio and seg.sum() > area_threash:
new_mask_list.append(mask)
for mask in new_mask_list:
mask_none &= ~mask['segmentation']
logger.info(len(new_mask_list))
logger.info("now ratio:",mask_none.sum() / (mask_none.shape[0] * mask_none.shape[1]) )
logger.info("expected ratios:",mask_ratio_thresh)
if other_masks_list is not None:
for mask in other_masks_list:
if mask_none.sum() / (mask_none.shape[0] * mask_none.shape[1]) > mask_ratio_thresh: # Still a lot of gaps, greater than current thresh
seg = mask['segmentation']
if (mask_none & seg).sum()/seg.sum() > ratio and seg.sum() > area_threash:
new_mask_list.append(mask)
mask_none &= ~seg
else:
break
logger.info(len(new_mask_list))
return new_mask_list
def get_bbox_from_mask(mask):
# Get row and column indices of non-zero elements
rows = np.any(mask, axis=1)
cols = np.any(mask, axis=0)
# Find min and max indices of non-zero rows and columns
ymin, ymax = np.where(rows)[0][[0, -1]]
xmin, xmax = np.where(cols)[0][[0, -1]]
# Calculate width and height
width = xmax - xmin + 1
height = ymax - ymin + 1
return xmin, ymin, width, height
def cal_no_mask_area_ratio(out_mask_list):
h = out_mask_list[0].shape[1]
w = out_mask_list[0].shape[2]
mask_none = ~out_mask_list[0].copy()
for prev_mask in out_mask_list[1:]:
mask_none &= ~prev_mask
return(mask_none.sum() / (h * w))
class Prompts:
def __init__(self,bs:int):
self.batch_size = bs
self.prompts = {}
self.obj_list = []
self.key_frame_list = []
self.key_frame_obj_begin_list = []
def add(self,obj_id,frame_id,mask):
if obj_id not in self.obj_list:
new_obj = True
self.prompts[obj_id] = []
self.obj_list.append(obj_id)
else:
new_obj = False
self.prompts[obj_id].append((frame_id,mask))
if frame_id not in self.key_frame_list and new_obj:
# import ipdb; ipdb.set_trace()
self.key_frame_list.append(frame_id)
self.key_frame_obj_begin_list.append(obj_id)
logger.info("key_frame_obj_begin_list:",self.key_frame_obj_begin_list)
def get_obj_num(self):
return len(self.obj_list)
def __len__(self):
if self.obj_list % self.batch_size == 0:
return len(self.obj_list) // self.batch_size
else:
return len(self.obj_list) // self.batch_size +1
def __iter__(self):
# self.batch_index = 0
self.start_idx = 0
self.iter_frameindex = 0
return self
def __next__(self):
if self.start_idx < len(self.obj_list):
if self.iter_frameindex == len(self.key_frame_list)-1:
end_idx = min(self.start_idx+self.batch_size, len(self.obj_list))
else:
if self.start_idx+self.batch_size < self.key_frame_obj_begin_list[self.iter_frameindex+1]:
end_idx = self.start_idx+self.batch_size
else:
end_idx = self.key_frame_obj_begin_list[self.iter_frameindex+1]
self.iter_frameindex+=1
# end_idx = min(self.start_idx+self.batch_size, self.key_frame_obj_begin_list[self.iter_frameindex+1])
batch_keys = self.obj_list[self.start_idx:end_idx]
batch_prompts = {key: self.prompts[key] for key in batch_keys}
self.start_idx = end_idx
return batch_prompts
# if self.batch_index * self.batch_size < len(self.obj_list):
# start_idx = self.batch_index * self.batch_size
# end_idx = min(start_idx + self.batch_size, len(self.obj_list))
# batch_keys = self.obj_list[start_idx:end_idx]
# batch_prompts = {key: self.prompts[key] for key in batch_keys}
# self.batch_index += 1
# return batch_prompts
else:
raise StopIteration
def get_video_segments(prompts_loader,predictor,inference_state,final_output=False):
video_segments = {}
for batch_prompts in tqdm(prompts_loader,desc="processing prompts\n"):
predictor.reset_state(inference_state)
for id, prompt_list in batch_prompts.items():
for prompt in prompt_list:
# import ipdb; ipdb.set_trace()
_, out_obj_ids, out_mask_logits = predictor.add_new_mask(
inference_state=inference_state,
frame_idx=prompt[0],
obj_id=id,
mask=prompt[1]
)
# start_frame_idx = 0 if final_output else None
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state):
if out_frame_idx not in video_segments:
video_segments[out_frame_idx] = { }
for i, out_obj_id in enumerate(out_obj_ids):
video_segments[out_frame_idx][out_obj_id]= (out_mask_logits[i] > 0.0).cpu().numpy()
if final_output:
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state,reverse=True):
for i, out_obj_id in enumerate(out_obj_ids):
video_segments[out_frame_idx][out_obj_id]= (out_mask_logits[i] > 0.0).cpu().numpy()
return video_segments
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--video_path",type=str,required=True)
parser.add_argument("--output_dir",type=str,required=True)
parser.add_argument("--level",choices=['default','small','middle','large'])
parser.add_argument("--batch_size",type=int,default=20)
parser.add_argument("--sam1_checkpoint",type=str,default="/home/lff/bigdata1/cjw/checkpoints/sam/sam_vit_h_4b8939.pth")
parser.add_argument("--sam2_checkpoint",type=str,default="/home/lff/bigdata1/cjw/checkpoints/sam2/sam2_hiera_large.pt")
parser.add_argument("--detect_stride",type=int,default=10)
parser.add_argument("--use_other_level",type=int,default=1)
parser.add_argument("--postnms",type=int,default=1)
parser.add_argument("--pred_iou_thresh",type=float,default=0.7)
parser.add_argument("--box_nms_thresh",type=float,default=0.7)
parser.add_argument("--stability_score_thresh",type=float,default=0.85)
parser.add_argument("--reverse", action="store_true")
level_dict = {
"default": 0,
"small": 1,
"middle": 2,
"large": 3
}
args = parser.parse_args()
logger.add(os.path.join(args.output_dir,f'{args.level}.log'), rotation="500 MB")
logger.info(args)
video_dir = args.video_path
level = args.level
base_dir = args.output_dir
##### load Sam2 and Sam1 Model #####
sam2_checkpoint = args.sam2_checkpoint
model_cfg = "sam2_hiera_l.yaml"
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
sam2 = build_sam2(model_cfg, sam2_checkpoint, device='cuda', apply_postprocessing=False)
sam_ckpt_path = args.sam1_checkpoint
sam = sam_model_registry["vit_h"](checkpoint=sam_ckpt_path).to('cuda')
mask_generator = SamAutomaticMaskGenerator(
model=sam,
points_per_side=32,
pred_iou_thresh=args.pred_iou_thresh,
box_nms_thresh=args.box_nms_thresh,
stability_score_thresh=args.stability_score_thresh,
crop_n_layers=1,
crop_n_points_downscale_factor=1,
min_mask_region_area=100,
)
# scan all the JPEG frame names in this directory
frame_names = [
p for p in os.listdir(video_dir)
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG", ".png"]
]
try:
frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]), reverse=args.reverse)
except:
frame_names.sort(key=lambda p: os.path.splitext(p)[0], reverse=args.reverse)
now_frame = 0
inference_state = predictor.init_state(video_path=video_dir)
masks_from_prev = []
sum_id = 0 # Record total number of objects
prompts_loader = Prompts(bs=args.batch_size) # hold all the clicks we add for visualization
while True:
logger.info(f"frame: {now_frame}")
sum_id = prompts_loader.get_obj_num()
image_path = os.path.join(video_dir,frame_names[now_frame])
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# resize if the input is too large:
orig_h, orig_w = image.shape[:2]
if orig_h > 1080:
logger.info("Resizing original image to 1080P...")
scale = 1080 / orig_h
h = int(orig_h * scale)
w = int(orig_w * scale)
image = cv2.resize(image, (w, h))
# Generate only large masks
# masks_l = mask_generator.generate_l(image)
all_masks = mask_generator.generate(image)
masks = all_masks[level_dict[args.level]]
# masks_l = mask_generator.generate(image)
if args.postnms:
# # Pass masks_l directly, no need to wrap in tuple
# # masks_l = masks_update(masks_l, iou_thr=0.8, score_thr=0.7, inner_thr=0.5)[0]
masks = masks_update(masks, iou_thr=0.8, score_thr=0.7, inner_thr=0.5)[0]
# Use large level masks
# masks = masks_l
other_masks = None
if not args.use_other_level:
other_masks = None
if now_frame == 0: # first frame
ann_obj_id_list = range(len(masks))
for ann_obj_id in tqdm(ann_obj_id_list):
seg = masks[ann_obj_id]['segmentation']
prompts_loader.add(ann_obj_id,0,seg)
else:
new_mask_list = search_new_obj(masks_from_prev, masks, other_masks,mask_ratio_thresh)
logger.info(f"number of new obj: {len(new_mask_list)}")
for id,mask in enumerate(masks_from_prev):
if mask.sum() == 0:
continue
prompts_loader.add(id,now_frame,mask[0])
for i in range(len(new_mask_list)):
new_mask = new_mask_list[i]['segmentation']
prompts_loader.add(sum_id+i,now_frame,new_mask)
logger.info(f"obj num: {prompts_loader.get_obj_num()}")
if now_frame==0 or len(new_mask_list)!=0:
video_segments = get_video_segments(prompts_loader,predictor,inference_state)
vis_frame_stride = args.detect_stride
max_area_no_mask = (0,-1)
for out_frame_idx in tqdm(range(0, len(frame_names), vis_frame_stride)):
if out_frame_idx < now_frame:
continue
out_mask_list = []
for out_obj_id, out_mask in video_segments[out_frame_idx].items():
out_mask_list.append(out_mask)
no_mask_ratio = cal_no_mask_area_ratio(out_mask_list)
if now_frame == out_frame_idx:
mask_ratio_thresh = no_mask_ratio
logger.info(f"mask_ratio_thresh: {mask_ratio_thresh}")
if no_mask_ratio > mask_ratio_thresh + 0.01 and out_frame_idx > now_frame:
masks_from_prev = out_mask_list
max_area_no_mask = (no_mask_ratio, out_frame_idx)
logger.info(max_area_no_mask)
break
if max_area_no_mask[1] == -1:
break
logger.info("max_area_no_mask:", max_area_no_mask)
now_frame = max_area_no_mask[1]
###### Final output ######
save_dir = os.path.join(base_dir,level,"final-output")
os.makedirs(save_dir, exist_ok=True)
video_segments = get_video_segments(prompts_loader,predictor,inference_state,final_output=True)
for out_frame_idx in tqdm(range(0, len(frame_names), 1)):
out_mask_list = []
for out_obj_id, out_mask in video_segments[out_frame_idx].items():
out_mask_list.append(out_mask)
no_mask_ratio = cal_no_mask_area_ratio(out_mask_list)
logger.info(no_mask_ratio)
save_masks(out_mask_list, out_frame_idx,save_dir)
save_masks_npy(out_mask_list, out_frame_idx,save_dir)
###### Generate Visualization Frames ######
logger.info("Start generating visualization frames...")
vis_save_dir = os.path.join(base_dir,level,'visualization','full-mask-npy')
os.makedirs(vis_save_dir,exist_ok=True)
frame_save_dir = os.path.join(base_dir,level,'visualization','frames')
os.makedirs(frame_save_dir, exist_ok=True)
# Read all npy files
npy_name_list = []
for name in os.listdir(save_dir):
if 'npy' in name:
npy_name_list.append(name)
npy_name_list.sort()
logger.info(f"Found {len(npy_name_list)} npy files")
npy_list = [np.load(os.path.join(save_dir,name)) for name in npy_name_list]
image_list = [Image.open(os.path.join(video_dir,name)) for name in frame_names]
assert len(npy_list) == len(image_list), "Number of npy files does not match number of images"
logger.info(f"Processing {len(npy_list)} frames in total")
# Generate random colors
def generate_random_colors(num_colors):
colors = []
for _ in range(num_colors):
reroll = True
iter_cnt = 0
while reroll and iter_cnt < 100:
iter_cnt += 1
reroll = False
color = tuple(random.randint(1, 255) for _ in range(3))
for selected_color in colors:
if np.linalg.norm(np.array(color) - np.array(selected_color)) < 70:
reroll = True
break
colors.append(color)
return colors
num_masks = max(len(masks) for masks in npy_list)
colors = generate_random_colors(num_masks)
post_colors = [(0, 0, 0)] + colors
post_colors = np.array(post_colors) # [num_masks, 3]
np.save(os.path.join(base_dir, "colors.npy"), post_colors)
# Only process first and last frames
# frames_to_process = [0, -1] # Indices for first and last frames
for frame_idx in range(len(frame_names)):
# for frame_idx in frames_to_process:
masks = npy_list[frame_idx]
image = image_list[frame_idx]
image_np = np.array(image)
mask_combined = np.zeros_like(image_np, dtype=np.uint8)
for mask_id, mask in enumerate(masks):
mask = mask.squeeze(0)
mask_area = mask > 0
mask_combined[mask_area, :] = colors[mask_id]
# Blend original image with colored mask
mask_combined = np.clip(mask_combined, 0, 255)
# blended_image = cv2.addWeighted(image_np, 0.7, mask_combined, 0.3, 0)
blended_image = mask_combined
# change the save path
frame_name = frame_names[frame_idx]
frame_save_dir = base_dir
output_path = os.path.join(frame_save_dir, frame_name)
Image.fromarray(blended_image).save(output_path)
logger.info(f"Frame saved to: {output_path}") |