File size: 8,423 Bytes
684943d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import json 
import torch 
import cv2
from typing import Any, Dict, List, Optional, Tuple
from torch.utils.data import DataLoader, Dataset 
import torchvision.transforms as TT  
from torchvision import transforms
from torchvision.transforms.functional import center_crop, resize 
from torchvision.transforms import InterpolationMode 
import numpy as np
import random, os 
try:
    import decord
except ImportError:
    raise ImportError(
        "The `decord` package is required for loading the video dataset. Install with `pip install decord`"
    )

decord.bridge.set_bridge("torch")

class ImageVideoDataset(Dataset): 
    def __init__(
        self,
        root_path,
        annotation_json,
        tokenizer,
        max_sequence_length: int = 226,
        height: int = 480,
        width: int = 640,
        video_reshape_mode: str = "center",
        fps: int = 8,
        stripe: int = 2,
        max_num_frames: int = 49,
        skip_frames_start: int = 0,
        skip_frames_end: int = 0,
        random_flip: Optional[float] = None,
    ) -> None:
        super().__init__() 

        self.root_path = root_path
        with open(annotation_json, 'r') as f: 
            self.data_list = json.load(f)
        
        self.tokenizer = tokenizer 
        self.max_sequence_length = max_sequence_length 
        self.height = height
        self.width = width
        self.video_reshape_mode = video_reshape_mode
        self.fps = fps
        self.max_num_frames = max_num_frames
        self.skip_frames_start = skip_frames_start
        self.skip_frames_end = skip_frames_end 
        self.stripe = stripe 
        self.video_transforms = transforms.Compose(
            [
                transforms.RandomHorizontalFlip(random_flip) if random_flip else transforms.Lambda(lambda x: x),
                transforms.Lambda(lambda x: x / 255.0),
                transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
            ]
        )

    
    def __len__(self):
        return len(self.data_list) 
    
    def _resize_for_rectangle_crop(self, arr):
        image_size = self.height, self.width
        reshape_mode = self.video_reshape_mode
        if arr.shape[3] / arr.shape[2] > image_size[1] / image_size[0]:
            arr = resize(
                arr,
                size=[image_size[0], int(arr.shape[3] * image_size[0] / arr.shape[2])],
                interpolation=InterpolationMode.BICUBIC,
            )
        else:
            arr = resize(
                arr,
                size=[int(arr.shape[2] * image_size[1] / arr.shape[3]), image_size[1]],
                interpolation=InterpolationMode.BICUBIC,
            )

        h, w = arr.shape[2], arr.shape[3]
        arr = arr.squeeze(0)

        delta_h = h - image_size[0]
        delta_w = w - image_size[1]

        if reshape_mode == "random" or reshape_mode == "none":
            top = np.random.randint(0, delta_h + 1)
            left = np.random.randint(0, delta_w + 1)
        elif reshape_mode == "center":
            top, left = delta_h // 2, delta_w // 2
        else:
            raise NotImplementedError
        arr = TT.functional.crop(arr, top=top, left=left, height=image_size[0], width=image_size[1])
        return arr
    
    def __getitem__(self, index): 
        while True: 
            try:
                video_path = os.path.join(self.root_path, self.data_list[index]['clip_path'])
                video_reader = decord.VideoReader(video_path, width=self.width, height=self.height)
                video_num_frames = len(video_reader) 
                # print(video_num_frames, video_reader.get_avg_fps()) 
                if self.stripe * self.max_num_frames > video_num_frames: 
                    stripe = 1
                else:
                    stripe = self.stripe 

                random_range = video_num_frames - stripe * self.max_num_frames - 1
                random_range = max(1, random_range)
                start_frame = random.randint(1, random_range) if random_range > 0 else 1
                
                indices = list(range(start_frame, start_frame + stripe * self.max_num_frames, stripe)) # (end_frame - start_frame) // self.max_num_frames))
                frames = video_reader.get_batch(indices)

                # Ensure that we don't go over the limit
                frames = frames[: self.max_num_frames]
                selected_num_frames = frames.shape[0]

                # Choose first (4k + 1) frames as this is how many is required by the VAE
                remainder = (3 + (selected_num_frames % 4)) % 4
                if remainder != 0:
                    frames = frames[:-remainder]
                selected_num_frames = frames.shape[0]

                assert (selected_num_frames - 1) % 4 == 0 
                if selected_num_frames == self.max_num_frames: 
                    break 
                else:
                    index = (index + 1) % len(self.data_list) 
                    continue 
            
            except Exception as e:
                index = (index + 1) % len(self.data_list) 
                print(video_num_frames, start_frame, indices)
                print(
                    "Error encounter during audio feature extraction: ", e, 
                )
                continue

        # Training transforms
        # frames = (frames - 127.5) / 127.5
        frames = frames.permute(0, 3, 1, 2).contiguous()  # [F, C, H, W]
        frames = self._resize_for_rectangle_crop(frames) 
        frames = torch.stack([self.video_transforms(frame) for frame in frames], dim=0) 

        text_inputs = self.tokenizer(
            [self.data_list[index]['caption']],
            padding="max_length",
            max_length=self.max_sequence_length,
            truncation=True,
            add_special_tokens=True,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids[0]

        return frames.contiguous(), text_input_ids


class AutoEncoderDataset(ImageVideoDataset):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
    def __getitem__(self, index): 
        while True: 
            try:
                video_path = os.path.join(self.root_path, self.data_list[index]['clip_path'])
                video_reader = decord.VideoReader(video_path, width=self.width, height=self.height)
                video_num_frames = len(video_reader) 
                # print(video_num_frames, video_reader.get_avg_fps()) 
                if self.stripe * self.max_num_frames > video_num_frames: 
                    stripe = 1
                else:
                    stripe = self.stripe 
                
                random_indice = [random.randint(1, video_num_frames - 1)] # random selects a frame from the video
                frames = video_reader.get_batch(random_indice)
                break 
            
            except Exception as e:
                print("[WARN] Get problem when loading video: ", self.data_list[index]['clip_path'])
                print(
                    "Error encounter during audio feature extraction: ", e, 
                )
                index = random.randint(0, len(self.data_list) - 1)
                continue
        return frames


class LvisDataset(Dataset): 
    def __init__(
        self,
        root_path,
        annotation_json,
        height: int = 480,
        width: int = 640,
        random_flip: Optional[float] = None,
    ) -> None:
        super().__init__() 

        self.root_path = root_path
        with open(annotation_json, 'r') as f: 
            self.data_list = json.load(f)['images']
        
        self.height = height
        self.width = width
        self.width = width
        self.video_transforms = transforms.Compose(
            [
                transforms.Lambda(lambda x: x / 255.0),
                transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
            ]
        )


    def __len__(self):
        return len(self.data_list) 
    
    def __getitem__(self, index): 

        image_path = os.path.join(self.root_path, "unlabeled2017", self.data_list[index]['file_name'])
        image = cv2.imread(image_path)
        image = cv2.resize(image, (self.width, self.height))
        image = self.video_transforms(torch.from_numpy(image).permute(2, 0, 1))

        return image.contiguous()