Spaces:
Running
Running
File size: 56,417 Bytes
684943d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 |
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import copy
import logging
import os
import random
from random import randint
import cv2
import numpy as np
import open3d as o3d
import torch
import torch.nn.functional as F
import torchvision
from tqdm import tqdm
from cogvideox_interpolation.utils.colormaps import apply_pca_colormap
from .gaussian_renderer import render
from .scene import GaussianModel, Scene
from .scene.app_model import AppModel
from .scene.cameras import Camera
from .utils.camera_utils import gen_virtul_cam
from .utils.general_utils import safe_state
from .utils.graphics_utils import patch_offsets, patch_warp
from .utils.image_utils import psnr
from .utils.loss_utils import (get_img_grad_weight, get_loss_instance_group,
get_loss_semantic_group, l1_loss, lncc,
loss_cls_3d, ranking_loss, ssim)
from .utils.pose_utils import (get_camera_from_tensor, get_tensor_from_camera,
post_pose_process, quad2rotation)
def post_process_mesh(mesh, cluster_to_keep=3):
"""
Post-process a mesh to filter out floaters and disconnected parts
"""
print("post processing the mesh to have {} clusterscluster_to_kep".format(cluster_to_keep))
mesh_0 = copy.deepcopy(mesh)
with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm:
triangle_clusters, cluster_n_triangles, cluster_area = (mesh_0.cluster_connected_triangles())
triangle_clusters = np.asarray(triangle_clusters)
cluster_n_triangles = np.asarray(cluster_n_triangles)
cluster_area = np.asarray(cluster_area)
n_cluster = np.sort(cluster_n_triangles.copy())[-cluster_to_keep]
n_cluster = max(n_cluster, 50) # filter meshes smaller than 50
triangles_to_remove = cluster_n_triangles[triangle_clusters] < n_cluster
mesh_0.remove_triangles_by_mask(triangles_to_remove)
mesh_0.remove_unreferenced_vertices()
mesh_0.remove_degenerate_triangles()
print("num vertices raw {}".format(len(mesh.vertices)))
print("num vertices post {}".format(len(mesh_0.vertices)))
return mesh_0
def permuted_pca(image):
return apply_pca_colormap(image.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
def save_pose(path, quat_pose, train_cams):
# Get camera IDs and convert quaternion poses to camera matrices
camera_ids = [cam.colmap_id for cam in train_cams]
world_to_camera = [get_camera_from_tensor(quat) for quat in quat_pose]
# Reorder poses according to colmap IDs
colmap_poses = []
for i in range(len(camera_ids)):
idx = camera_ids.index(i + 1) # Find position of camera i+1
pose = world_to_camera[idx]
colmap_poses.append(pose)
# Convert to numpy array and save
colmap_poses = torch.stack(colmap_poses).detach().cpu().numpy()
np.save(path, colmap_poses)
def load_and_prepare_confidence(confidence_path, device='cuda', scale=(0.1, 1.0)):
"""
Loads, normalizes, inverts, and scales confidence values to obtain learning rate modifiers.
Args:
confidence_path (str): Path to the .npy confidence file.
device (str): Device to load the tensor onto.
scale (tuple): Desired range for the learning rate modifiers.
Returns:
torch.Tensor: Learning rate modifiers.
"""
# Load and normalize
confidence_np = np.load(confidence_path)
confidence_tensor = torch.from_numpy(confidence_np).float().to(device)
normalized_confidence = torch.sigmoid(confidence_tensor)
# Invert confidence and scale to desired range
inverted_confidence = 1.0 - normalized_confidence
min_scale, max_scale = scale
lr_modifiers = inverted_confidence * (max_scale - min_scale) + min_scale
return lr_modifiers
class GaussianField():
def __init__(self, cfg):
self.cfg = cfg
def train(self):
cfg = self.cfg
dataset = cfg.gaussian.dataset
opt = cfg.gaussian.opt
pipe = cfg.gaussian.pipe
device = cfg.gaussian.dataset.data_device
self.gaussians = GaussianModel(cfg.gaussian.dataset.sh_degree)
self.scene = Scene(cfg.gaussian.dataset, self.gaussians)
self.app_model = AppModel()
self.app_model.train().cuda()
logging.info("Optimizing " + dataset.model_path)
safe_state(cfg.gaussian.quiet)
if opt.pp_optimizer:
confidence_path = os.path.join(dataset.source_path, f"sparse/0", "confidence_dsp.npy")
try:
confidence_lr = load_and_prepare_confidence(confidence_path, device='cuda', scale=(2, 100))
self.gaussians.training_setup_pp(opt, confidence_lr, device)
except:
logging.warning("can not load confidence. ")
cfg.opt.pp_optimizer = False
self.gaussians.training_setup(opt, device)
else:
self.gaussians.training_setup(opt, device)
train_cams_init = self.scene.getTrainCameras().copy()
for save_iter in cfg.gaussian.save_iterations:
os.makedirs(self.scene.model_path + f'/pose/iter_{save_iter}', exist_ok=True)
save_pose(self.scene.model_path + f'/pose/iter_{save_iter}/pose_org.npy', self.gaussians.P, train_cams_init)
first_iter = 0
if cfg.gaussian.start_checkpoint != "None":
model_params, first_iter = torch.load(cfg.gaussian.start_checkpoint)
self.gaussians.restore(model_params, opt)
self.app_model.load_weights(self.scene.model_path)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device=device)
iter_start = torch.cuda.Event(enable_timing=True)
iter_end = torch.cuda.Event(enable_timing=True)
viewpoint_stack = None
ema_loss_for_log = 0.0
ema_single_view_for_log = 0.0
ema_multi_view_geo_for_log = 0.0
ema_multi_view_pho_for_log = 0.0
ema_language_loss_for_log = 0.0
ema_grouping_loss = 0.0
ema_loss_obj_3d = 0.0
ema_ins_grouping_loss = 0.0
ema_ins_obj_3d_loss = 0.0
normal_loss, geo_loss, ncc_loss = None, None, None
language_loss = None
grouping_loss = None
include_feature = True
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
first_iter += 1
debug_path = os.path.join(self.scene.model_path, "debug")
os.makedirs(debug_path, exist_ok=True)
camera_list = self.scene.getTrainCameras().copy()
last_cam_id = -1
self.gaussians.change_reqiures_grad("semantic", iteration=first_iter, quiet=False)
if not opt.optim_pose:
self.gaussians.P.requires_grad_(False)
for iteration in range(first_iter, opt.iterations + 1):
iter_start.record()
self.gaussians.update_learning_rate(iteration)
if iteration % 100 == 0:
self.gaussians.oneupSHdegree()
if not viewpoint_stack:
viewpoint_stack = camera_list.copy()
# update camera lists:
for cam_idx, cam in enumerate(camera_list):
if cam.uid == last_cam_id:
updated_pose = self.gaussians.get_RT(self.gaussians.index_mapping[last_cam_id]).clone().detach()
extrinsics = get_camera_from_tensor(updated_pose)
camera_list[cam_idx].R = extrinsics[:3, :3].T
camera_list[cam_idx].T = extrinsics[:3, 3]
break
viewpoint_cam: Camera = viewpoint_stack.pop(randint(0, len(viewpoint_stack) - 1))
last_cam_id = viewpoint_cam.uid
pose = self.gaussians.get_RT(self.gaussians.index_mapping[last_cam_id]) # quad t
if (iteration - 1) == cfg.gaussian.debug_from:
pipe.debug = True
bg = torch.rand((3), device="cuda") if opt.random_background else background
if not opt.optim_pose:
render_pkg = render(viewpoint_cam, self.gaussians, pipe, bg, app_model=self.app_model,
return_depth_normal=iteration > opt.single_view_weight_from_iter,
include_feature=include_feature)
else:
render_pkg = render(viewpoint_cam, self.gaussians, pipe, bg, app_model=self.app_model,
return_depth_normal=iteration > opt.single_view_weight_from_iter,
include_feature=include_feature, camera_pose=pose)
image, viewspace_point_tensor, visibility_filter, radii, language_feature, instance_feature = \
render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"], \
render_pkg["language_feature"], render_pkg["instance_feature"]
overall_loss = 0
image_loss = None
obj_3d_loss = None
grouping_loss = None
ins_obj_3d_loss = None
ins_grouping_loss = None
if iteration == opt.max_geo_iter:
self.gaussians.change_reqiures_grad("semantic_only", iteration=iteration, quiet=False)
if iteration < opt.max_geo_iter:
gt_image, gt_image_gray = viewpoint_cam.get_image()
ssim_loss = (1.0 - ssim(image, gt_image))
if 'app_image' in render_pkg and ssim_loss < 0.5:
app_image = render_pkg['app_image']
Ll1 = l1_loss(app_image, gt_image)
else:
Ll1 = l1_loss(image, gt_image)
image_loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * ssim_loss
overall_loss = overall_loss + image_loss
# scale loss
if visibility_filter.sum() > 0:
scale = self.gaussians.get_scaling[visibility_filter]
sorted_scale, _ = torch.sort(scale, dim=-1)
min_scale_loss = sorted_scale[..., 0]
overall_loss = overall_loss + opt.scale_loss_weight * min_scale_loss.mean()
# single view loss:
if opt.single_view_weight_from_iter < iteration < opt.single_view_weight_end_iter:
weight = opt.single_view_weight
normal = render_pkg["rendered_normal"]
depth_normal = render_pkg["depth_normal"]
image_weight = (1.0 - get_img_grad_weight(gt_image))
image_weight = (image_weight).clamp(0, 1).detach() ** 2
if opt.normal_optim:
render_normal = (normal.permute(1, 2, 0) @ (viewpoint_cam.world_view_transform[:3, :3].T)).permute(2, 0, 1)
rendered_depth_normal = (depth_normal.permute(1, 2, 0) @ (viewpoint_cam.world_view_transform[:3, :3].T)).permute(2, 0, 1)
normal_gt, normal_mask = viewpoint_cam.get_normal()
prior_normal = normal_gt
prior_normal_mask = normal_mask[0]
normal_prior_error = (1 - F.cosine_similarity(prior_normal, render_normal, dim=0)) + \
(1 - F.cosine_similarity(prior_normal, rendered_depth_normal, dim=0))
normal_prior_error = ranking_loss(normal_prior_error[prior_normal_mask],
penalize_ratio=1.0, type="mean")
normal_loss = weight * normal_prior_error
else:
if not opt.wo_image_weight:
normal_loss = weight * (image_weight * (((depth_normal - normal)).abs().sum(0))).mean()
else:
normal_loss = weight * (((depth_normal - normal)).abs().sum(0)).mean()
overall_loss = overall_loss + normal_loss
# multi-view loss
if opt.multi_view_weight_from_iter < iteration < opt.multi_view_weight_end_iter:
nearest_cam = None if len(viewpoint_cam.nearest_id) == 0 else camera_list[
random.sample(viewpoint_cam.nearest_id, 1)[0]]
use_virtul_cam = False
if opt.use_virtul_cam and (np.random.random() < opt.virtul_cam_prob or nearest_cam is None):
nearest_cam = gen_virtul_cam(viewpoint_cam, trans_noise=dataset.multi_view_max_dis,
deg_noise=dataset.multi_view_max_angle, device=device)
use_virtul_cam = True
if nearest_cam is not None:
patch_size = opt.multi_view_patch_size
sample_num = opt.multi_view_sample_num
pixel_noise_th = opt.multi_view_pixel_noise_th
total_patch_size = (patch_size * 2 + 1) ** 2
ncc_weight = opt.multi_view_ncc_weight
geo_weight = opt.multi_view_geo_weight
H, W = render_pkg['plane_depth'].squeeze().shape
ix, iy = torch.meshgrid(
torch.arange(W), torch.arange(H), indexing='xy')
pixels = torch.stack([ix, iy], dim=-1).float().to(render_pkg['plane_depth'].device)
if not use_virtul_cam:
nearest_pose = self.gaussians.get_RT(self.gaussians.index_mapping[nearest_cam.uid]) # quad t
if not opt.optim_pose:
nearest_render_pkg = render(nearest_cam, self.gaussians, pipe, bg, app_model=self.app_model,
return_plane=True, return_depth_normal=False)
else:
nearest_render_pkg = render(nearest_cam, self.gaussians, pipe, bg, app_model=self.app_model,
return_plane=True, return_depth_normal=False, camera_pose=nearest_pose.clone().detach())
else:
nearest_render_pkg = render(nearest_cam, self.gaussians, pipe, bg, app_model=self.app_model,
return_plane=True, return_depth_normal=False)
pts = self.gaussians.get_points_from_depth(viewpoint_cam, render_pkg['plane_depth'])
pts_in_nearest_cam = pts @ nearest_cam.world_view_transform[:3,
:3] + nearest_cam.world_view_transform[3, :3]
map_z, d_mask = self.gaussians.get_points_depth_in_depth_map(nearest_cam,
nearest_render_pkg['plane_depth'],
pts_in_nearest_cam)
pts_in_nearest_cam = pts_in_nearest_cam / (pts_in_nearest_cam[:, 2:3])
pts_in_nearest_cam = pts_in_nearest_cam * map_z.squeeze()[..., None]
R = torch.tensor(nearest_cam.R).float().cuda()
T = torch.tensor(nearest_cam.T).float().cuda()
pts_ = (pts_in_nearest_cam - T) @ R.transpose(-1, -2)
pts_in_view_cam = pts_ @ viewpoint_cam.world_view_transform[:3,
:3] + viewpoint_cam.world_view_transform[3, :3]
pts_projections = torch.stack(
[pts_in_view_cam[:, 0] * viewpoint_cam.Fx / pts_in_view_cam[:, 2] + viewpoint_cam.Cx,
pts_in_view_cam[:, 1] * viewpoint_cam.Fy / pts_in_view_cam[:, 2] + viewpoint_cam.Cy],
-1).float()
pixel_noise = torch.norm(pts_projections - pixels.reshape(*pts_projections.shape), dim=-1)
if not opt.wo_use_geo_occ_aware:
d_mask = d_mask & (pixel_noise < pixel_noise_th)
weights = (1.0 / torch.exp(pixel_noise)).detach()
weights[~d_mask] = 0
else:
d_mask = d_mask
weights = torch.ones_like(pixel_noise)
weights[~d_mask] = 0
if iteration % 200 == 0:
gt_img_show = ((gt_image).permute(1, 2, 0).clamp(0, 1)[:, :,
[2, 1, 0]] * 255).detach().cpu().numpy().astype(np.uint8)
if 'app_image' in render_pkg:
img_show = ((render_pkg['app_image']).permute(1, 2, 0).clamp(0, 1)[:, :,
[2, 1, 0]] * 255).detach().cpu().numpy().astype(np.uint8)
else:
img_show = ((image).permute(1, 2, 0).clamp(0, 1)[:, :,
[2, 1, 0]] * 255).detach().cpu().numpy().astype(np.uint8)
normal_show = (((normal + 1.0) * 0.5).permute(1, 2, 0).clamp(0,1) * 255).detach().cpu().numpy().astype(np.uint8)
depth_normal_show = (((depth_normal + 1.0) * 0.5).permute(1, 2, 0).clamp(0,1) * 255).detach().cpu().numpy().astype(np.uint8)
if not opt.normal_optim:
normal_gt = torch.zeros_like(normal)
normal_gt_show = (normal_gt.permute(1, 2, 0) @ (viewpoint_cam.world_view_transform[:3, :3])).permute(2, 0, 1)
normal_gt_show = (((normal_gt_show + 1.0) * 0.5).permute(1, 2, 0).clamp(0, 1) * 255).detach().cpu().numpy().astype(np.uint8)
d_mask_show = (weights.float() * 255).detach().cpu().numpy().astype(np.uint8).reshape(H, W)
d_mask_show_color = cv2.applyColorMap(d_mask_show, cv2.COLORMAP_JET)
depth = render_pkg['plane_depth'].squeeze().detach().cpu().numpy()
depth_i = (depth - depth.min()) / (depth.max() - depth.min() + 1e-20)
depth_i = (depth_i * 255).clip(0, 255).astype(np.uint8)
depth_color = cv2.applyColorMap(depth_i, cv2.COLORMAP_JET)
distance = render_pkg['rendered_distance'].squeeze().detach().cpu().numpy()
distance_i = (distance - distance.min()) / (distance.max() - distance.min() + 1e-20)
distance_i = (distance_i * 255).clip(0, 255).astype(np.uint8)
distance_color = cv2.applyColorMap(distance_i, cv2.COLORMAP_JET)
image_weight = image_weight.detach().cpu().numpy()
image_weight = (image_weight * 255).clip(0, 255).astype(np.uint8)
image_weight_color = cv2.applyColorMap(image_weight, cv2.COLORMAP_JET)
row0 = np.concatenate([gt_img_show, img_show, normal_show, distance_color], axis=1)
row1 = np.concatenate([d_mask_show_color, depth_color, depth_normal_show, normal_gt_show],
axis=1)
image_to_show = np.concatenate([row0, row1], axis=0)
cv2.imwrite(
os.path.join(debug_path, "%05d" % iteration + "_" + viewpoint_cam.image_name + ".jpg"),
image_to_show)
if d_mask.sum() > 0:
geo_loss = geo_weight * ((weights * pixel_noise)[d_mask]).mean()
overall_loss += geo_loss
if use_virtul_cam is False:
with torch.no_grad():
# sample mask
d_mask = d_mask.reshape(-1)
valid_indices = torch.arange(d_mask.shape[0], device=d_mask.device)[d_mask]
if d_mask.sum() > sample_num:
index = np.random.choice(d_mask.sum().cpu().numpy(), sample_num, replace=False)
valid_indices = valid_indices[index]
weights = weights.reshape(-1)[valid_indices]
# sample ref frame patch
pixels = pixels.reshape(-1, 2)[valid_indices]
offsets = patch_offsets(patch_size, pixels.device)
ori_pixels_patch = pixels.reshape(-1, 1, 2) / viewpoint_cam.ncc_scale + offsets.float()
H, W = gt_image_gray.squeeze().shape
pixels_patch = ori_pixels_patch.clone()
pixels_patch[:, :, 0] = 2 * pixels_patch[:, :, 0] / (W - 1) - 1.0
pixels_patch[:, :, 1] = 2 * pixels_patch[:, :, 1] / (H - 1) - 1.0
ref_gray_val = F.grid_sample(gt_image_gray.unsqueeze(1), pixels_patch.view(1, -1, 1, 2),
align_corners=True)
ref_gray_val = ref_gray_val.reshape(-1, total_patch_size)
ref_to_neareast_r = nearest_cam.world_view_transform[:3, :3].transpose(-1,
-2) @ viewpoint_cam.world_view_transform[
:3, :3]
ref_to_neareast_t = -ref_to_neareast_r @ viewpoint_cam.world_view_transform[3,
:3] + nearest_cam.world_view_transform[3, :3]
# compute Homography
ref_local_n = render_pkg["rendered_normal"].permute(1, 2, 0)
ref_local_n = ref_local_n.reshape(-1, 3)[valid_indices]
ref_local_d = render_pkg['rendered_distance'].squeeze()
ref_local_d = ref_local_d.reshape(-1)[valid_indices]
H_ref_to_neareast = ref_to_neareast_r[None] - \
torch.matmul(
ref_to_neareast_t[None, :, None].expand(ref_local_d.shape[0], 3, 1),
ref_local_n[:, :, None].expand(ref_local_d.shape[0], 3, 1).permute(
0, 2, 1)) / ref_local_d[..., None, None]
H_ref_to_neareast = torch.matmul(
nearest_cam.get_k(nearest_cam.ncc_scale)[None].expand(ref_local_d.shape[0], 3, 3),
H_ref_to_neareast)
H_ref_to_neareast = H_ref_to_neareast @ viewpoint_cam.get_inv_k(viewpoint_cam.ncc_scale)
# compute neareast frame patch
grid = patch_warp(H_ref_to_neareast.reshape(-1, 3, 3), ori_pixels_patch)
grid[:, :, 0] = 2 * grid[:, :, 0] / (W - 1) - 1.0
grid[:, :, 1] = 2 * grid[:, :, 1] / (H - 1) - 1.0
_, nearest_image_gray = nearest_cam.get_image()
sampled_gray_val = F.grid_sample(nearest_image_gray[None], grid.reshape(1, -1, 1, 2),
align_corners=True)
sampled_gray_val = sampled_gray_val.reshape(-1, total_patch_size)
# compute loss
ncc, ncc_mask = lncc(ref_gray_val, sampled_gray_val)
mask = ncc_mask.reshape(-1)
ncc = ncc.reshape(-1) * weights
ncc = ncc[mask].squeeze()
if mask.sum() > 0:
ncc_loss = ncc_weight * ncc.mean()
overall_loss = overall_loss + ncc_loss
if opt.lang_loss_start_iter <= iteration < opt.instance_supervision_from_iter:
# language feature loss
lf_path = os.path.join(dataset.source_path, dataset.language_features_name)
gt_language_feature, language_feature_mask, gt_seg = viewpoint_cam.get_language_feature(lf_path)
language_loss = l1_loss(language_feature * language_feature_mask,
gt_language_feature * language_feature_mask)
overall_loss = overall_loss + language_loss
language_feature_mask = language_feature_mask.reshape(-1)
if opt.grouping_loss:
grouping_loss = get_loss_semantic_group(gt_seg.reshape(-1)[language_feature_mask],
language_feature.permute(1, 2, 0).reshape(-1, 3)[
language_feature_mask])
overall_loss = overall_loss + grouping_loss
if opt.loss_obj_3d:
obj_3d_loss = loss_cls_3d(self.gaussians._xyz.detach().squeeze(),
self.gaussians._language_feature.squeeze(), opt.reg3d_k,
opt.reg3d_lambda_val, 2000000, 800)
overall_loss += obj_3d_loss
elif iteration >= opt.instance_supervision_from_iter:
# change the grad mode and copy the semantic featuers into instance-level
if iteration == opt.instance_supervision_from_iter:
self.gaussians._instance_feature.data.copy_(self.gaussians._language_feature.detach().clone())
self.gaussians.change_reqiures_grad("instance", iteration=iteration, quiet=False)
_, language_feature_mask, gt_seg = viewpoint_cam.get_language_feature(lf_path)
language_feature_mask = language_feature_mask.reshape(-1)
# supervise the instance features
if opt.grouping_loss:
ins_grouping_loss = get_loss_instance_group(gt_seg.reshape(-1)[language_feature_mask],
instance_feature.permute(1, 2, 0).reshape(-1, 3)[
language_feature_mask],
language_feature.permute(1, 2, 0).reshape(-1, 3)[
language_feature_mask])
overall_loss = overall_loss + ins_grouping_loss
if opt.loss_obj_3d:
ins_obj_3d_loss = loss_cls_3d(self.gaussians._xyz.detach().squeeze(), self.gaussians._instance_feature.squeeze(),
opt.reg3d_k, opt.reg3d_lambda_val, 2000000, 800)
overall_loss += ins_obj_3d_loss
overall_loss.backward()
iter_end.record()
with torch.no_grad():
ema_loss_for_log = 0.4 * image_loss.item() + 0.6 * ema_loss_for_log if image_loss is not None else 0.0 + 0.6 * ema_loss_for_log
ema_single_view_for_log = 0.4 * normal_loss.item() if normal_loss is not None else 0.0 + 0.6 * ema_single_view_for_log
ema_multi_view_geo_for_log = 0.4 * geo_loss.item() if geo_loss is not None else 0.0 + 0.6 * ema_multi_view_geo_for_log
ema_multi_view_pho_for_log = 0.4 * ncc_loss.item() if ncc_loss is not None else 0.0 + 0.6 * ema_multi_view_pho_for_log
ema_language_loss_for_log = 0.4 * language_loss.item() if language_loss is not None else 0.0 + 0.6 * ema_language_loss_for_log
ema_grouping_loss = 0.4 * grouping_loss.item() if grouping_loss is not None else 0.0 + 0.6 * ema_grouping_loss
ema_loss_obj_3d = 0.4 * obj_3d_loss.item() if obj_3d_loss is not None else 0.0 + 0.6 * ema_loss_obj_3d
ema_ins_obj_3d_loss = 0.4 * ins_obj_3d_loss.item() if ins_obj_3d_loss is not None else 0.0 + 0.6 * ema_ins_obj_3d_loss
ema_ins_grouping_loss = 0.4 * ins_grouping_loss.item() if ins_grouping_loss is not None else 0.0 + 0.6 * ema_ins_grouping_loss
if iteration % 10 == 0:
loss_dict = {
"Loss": f"{ema_loss_for_log:.{5}f}",
"Lang": f"{ema_language_loss_for_log:.{5}f}",
"Points": f"{len(self.gaussians.get_xyz)}",
"gp": f"{ema_grouping_loss:.{5}f}",
"3d": f"{ema_loss_obj_3d:.{5}f}",
"Ins": f"{ema_ins_grouping_loss:.{5}f}",
}
progress_bar.set_postfix(loss_dict)
progress_bar.update(10)
if iteration == opt.iterations:
progress_bar.close()
self.training_report(iteration, camera_list, l1_loss, render, (pipe, background))
if (iteration in cfg.gaussian.save_iterations):
print("\n[ITER {}] Saving Gaussians".format(iteration))
self.scene.save(iteration, include_feature=include_feature)
save_pose(self.scene.model_path + f'/pose/iter_{iteration}/pose_optimized.npy', self.gaussians.P, train_cams_init)
# Densification
if iteration < min(opt.max_geo_iter, opt.densify_until_iter):
# Keep track of max radii in image-space for pruning
mask = (render_pkg["out_observe"] > 0) & visibility_filter
self.gaussians.max_radii2D[mask] = torch.max(self.gaussians.max_radii2D[mask], radii[mask])
viewspace_point_tensor_abs = render_pkg["viewspace_points_abs"]
self.gaussians.add_densification_stats(viewspace_point_tensor, viewspace_point_tensor_abs, visibility_filter)
if opt.densify_from_iter < iteration < min(opt.max_geo_iter, opt.densify_until_iter) and iteration % opt.densification_interval == 0:
logging.info("densifying and pruning...")
size_threshold = 20 if iteration > opt.opacity_reset_interval else None
self.gaussians.densify_and_prune(opt.densify_grad_threshold, opt.densify_abs_grad_threshold,
opt.opacity_cull_threshold, self.scene.cameras_extent, size_threshold)
if iteration % opt.opacity_reset_interval == 0 or (dataset.white_background and iteration == opt.densify_from_iter):
self.gaussians.reset_opacity()
if iteration < opt.iterations:
self.gaussians.optimizer.step()
self.gaussians.cam_optimizer.step()
self.app_model.optimizer.step()
self.gaussians.optimizer.zero_grad(set_to_none=True)
self.gaussians.cam_optimizer.zero_grad(set_to_none=True)
self.app_model.optimizer.zero_grad(set_to_none=True)
if (iteration in cfg.gaussian.checkpoint_iterations):
print("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((self.gaussians.capture(include_feature=include_feature), iteration),
self.scene.model_path + "/chkpnt" + str(iteration) + ".pth")
self.app_model.save_weights(self.scene.model_path, iteration)
self.app_model.save_weights(self.scene.model_path, opt.iterations)
torch.cuda.empty_cache()
# move camera poses to target path.
max_save_iter = max(cfg.gaussian.save_iterations)
orig_path = self.scene.model_path + f'/pose/iter_{max_save_iter}/pose_optimized.npy'
camera_path = os.path.join(cfg.pipeline.data_path, "camera")
eg_file = os.listdir(camera_path)[0]
logging.info("Post processing pose & move to data path...")
post_pose_process(orig_path, os.path.join(camera_path, eg_file), os.path.join(cfg.pipeline.data_path, "render_camera"))
def training_report(self, iteration, camera_list, l1_loss, renderFunc, renderArgs):
# Report test and samples of training set
# do not use the optimized poses.
if iteration in self.cfg.gaussian.test_iterations:
torch.cuda.empty_cache()
validation_configs = ({'name': 'test', 'cameras': camera_list},
{'name': 'train',
'cameras': [self.scene.getTrainCameras()[idx % len(self.scene.getTrainCameras())] for idx in
range(5, 30, 5)]})
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
for idx, viewpoint in enumerate(config['cameras']):
if self.cfg.gaussian.opt.optim_pose:
camera_pose = get_tensor_from_camera(viewpoint.world_view_transform.transpose(0, 1))
out = renderFunc(viewpoint, self.scene.gaussians, *renderArgs, app_model=self.app_model, camera_pose=camera_pose)
else:
out = renderFunc(viewpoint, self.scene.gaussians, *renderArgs, app_model=self.app_model)
image = out["render"]
if 'app_image' in out:
image = out['app_image']
image = torch.clamp(image, 0.0, 1.0)
gt_image, _ = viewpoint.get_image()
gt_image = torch.clamp(gt_image.to("cuda"), 0.0, 1.0)
l1_test += l1_loss(image, gt_image).mean().double()
psnr_test += psnr(image, gt_image).mean().double()
img_show = ((image).permute(1, 2, 0).clamp(0, 1)[:, :,
[2, 1, 0]] * 255).detach().cpu().numpy().astype(np.uint8)
img_gt_show = ((gt_image).permute(1, 2, 0).clamp(0, 1)[:, :,
[2, 1, 0]] * 255).detach().cpu().numpy().astype(np.uint8)
img_tosave = np.concatenate([img_show, img_gt_show], axis=1)
valid_path = os.path.join(self.cfg.gaussian.dataset.model_path, "valid")
os.makedirs(valid_path, exist_ok=True)
cv2.imwrite(os.path.join(valid_path, f"{iteration}_{viewpoint.uid}.png"), img_tosave)
psnr_test /= len(config['cameras'])
l1_test /= len(config['cameras'])
logging.info("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test))
torch.cuda.empty_cache()
def render(self):
cfg = self.cfg
dataset = cfg.gaussian.dataset
pipe = cfg.gaussian.pipe
device = cfg.gaussian.dataset.data_device
render_cfg = cfg.gaussian.render
opt = cfg.gaussian.opt
logging.info("Rendering " + dataset.model_path)
safe_state(cfg.gaussian.quiet)
voxel_size = 0.01
volume = o3d.pipelines.integration.ScalableTSDFVolume(
voxel_length=voxel_size,
sdf_trunc=4.0 * voxel_size,
color_type=o3d.pipelines.integration.TSDFVolumeColorType.RGB8
)
volume_feature = o3d.pipelines.integration.ScalableTSDFVolume(
voxel_length=voxel_size,
sdf_trunc=4.0 * voxel_size,
color_type=o3d.pipelines.integration.TSDFVolumeColorType.RGB8
)
with torch.no_grad():
self.gaussians = GaussianModel(cfg.gaussian.dataset.sh_degree)
self.scene = Scene(cfg.gaussian.dataset, self.gaussians, load_iteration=cfg.pipeline.load_iteration, shuffle=False)
self.app_model = AppModel()
self.scene.loaded_iter = None
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device=device)
render_path = os.path.join(dataset.model_path, "test", "renders_rgb")
render_depth_path = os.path.join(dataset.model_path, "test", "renders_depth")
render_depth_npy_path = os.path.join(dataset.model_path, "test", "renders_depth_npy")
render_normal_path = os.path.join(dataset.model_path, "test", "renders_normal")
os.makedirs(render_path, exist_ok=True)
os.makedirs(render_depth_path, exist_ok=True)
os.makedirs(render_depth_npy_path, exist_ok=True)
os.makedirs(render_normal_path, exist_ok=True)
depths_tsdf_fusion = []
all_language_feature = []
all_gt_language_feature = []
all_instance_feature = []
for idx, view in enumerate(tqdm(self.scene.getTrainCameras(), desc="Rendering progress")):
camera_pose = get_tensor_from_camera(view.world_view_transform.transpose(0, 1))
gt, _ = view.get_image()
if not opt.optim_pose:
out = render(view, self.gaussians, pipe, background, app_model=None)
else:
out = render(view, self.gaussians, pipe, background, app_model=None, camera_pose=camera_pose)
rendering = out["render"].clamp(0.0, 1.0)
_, H, W = rendering.shape
depth = out["plane_depth"].squeeze()
depth_tsdf = depth.clone()
depth = depth.detach().cpu().numpy()
depth_i = (depth - depth.min()) / (depth.max() - depth.min() + 1e-20)
depth_i = (depth_i * 255).clip(0, 255).astype(np.uint8)
depth_color = cv2.applyColorMap(depth_i, cv2.COLORMAP_JET)
normal = out["rendered_normal"].permute(1, 2, 0)
normal = normal @ view.world_view_transform[:3, :3]
normal = normal / (normal.norm(dim=-1, keepdim=True) + 1.0e-8)
# normal = normal.detach().cpu().numpy()
# normal = ((normal + 1) * 127.5).astype(np.uint8).clip(0, 255)
normal = normal.detach().cpu().numpy()[:, :, ::-1]
normal = ((1-normal) * 127.5).astype(np.uint8).clip(0, 255)
language_feature = out["language_feature"]
instance_feature = out["instance_feature"]
all_language_feature.append(language_feature)
all_instance_feature.append(instance_feature)
lf_path = os.path.join(dataset.source_path, dataset.language_features_name)
if os.path.exists(lf_path):
gt_language, _, _ = view.get_language_feature(lf_path)
all_gt_language_feature.append(gt_language)
gts_path = os.path.join(dataset.model_path, "test", "gt_rgb")
os.makedirs(gts_path, exist_ok=True)
torchvision.utils.save_image(gt.clamp(0.0, 1.0), os.path.join(gts_path, view.image_name + ".png"))
torchvision.utils.save_image(rendering, os.path.join(render_path, view.image_name + ".png"))
cv2.imwrite(os.path.join(render_depth_path, view.image_name + ".jpg"), depth_color)
np.save(os.path.join(render_depth_npy_path, view.image_name + ".npy"), depth)
cv2.imwrite(os.path.join(render_normal_path, view.image_name + ".jpg"), normal)
view_dir = torch.nn.functional.normalize(view.get_rays(), p=2, dim=-1)
depth_normal = out["depth_normal"].permute(1, 2, 0)
depth_normal = torch.nn.functional.normalize(depth_normal, p=2, dim=-1)
dot = torch.sum(view_dir * depth_normal, dim=-1).abs()
angle = torch.acos(dot)
mask = angle > (80.0 / 180 * 3.14159)
depth_tsdf[mask] = 0
depths_tsdf_fusion.append(depth_tsdf.squeeze().cpu())
depths_tsdf_fusion = torch.stack(depths_tsdf_fusion, dim=0)
max_depth = 5.0
for idx, view in enumerate(tqdm(self.scene.getTrainCameras(), desc="TSDF Fusion progress")):
ref_depth = depths_tsdf_fusion[idx].cuda()
if view.mask is not None:
ref_depth[view.mask.squeeze() < 0.5] = 0
ref_depth[ref_depth > max_depth] = 0
ref_depth = ref_depth.detach().cpu().numpy()
pose = np.identity(4)
pose[:3, :3] = view.R.transpose(-1, -2)
pose[:3, 3] = view.T
color = o3d.io.read_image(os.path.join(render_path, view.image_name + ".png"))
depth = o3d.geometry.Image((ref_depth * 1000).astype(np.uint16))
rgbd = o3d.geometry.RGBDImage.create_from_color_and_depth(
color, depth, depth_scale=1000.0, depth_trunc=max_depth, convert_rgb_to_intensity=False)
volume.integrate(
rgbd,
o3d.camera.PinholeCameraIntrinsic(W, H, view.Fx, view.Fy, view.Cx, view.Cy),
pose
)
num_cluster = 3
path = os.path.join(dataset.model_path, "mesh")
os.makedirs(path, exist_ok=True)
mesh = volume.extract_triangle_mesh()
o3d.io.write_triangle_mesh(os.path.join(path, "tsdf_fusion.ply"), mesh,
write_triangle_uvs=True, write_vertex_colors=True, write_vertex_normals=True)
mesh = post_process_mesh(mesh, num_cluster)
o3d.io.write_triangle_mesh(os.path.join(path, "tsdf_fusion_post.ply"), mesh,
write_triangle_uvs=True, write_vertex_colors=True, write_vertex_normals=True)
# perform pca among all lang/instance features
render_language_path = os.path.join(dataset.model_path, "test", "renders_language")
render_instance_path = os.path.join(dataset.model_path, "test", "renders_instance")
gts_language_path = os.path.join(dataset.model_path, "test", "gt_language")
render_language_npy_path = os.path.join(dataset.model_path, "test", "renders_language_npy")
render_instance_npy_path = os.path.join(dataset.model_path, "test", "renders_instance_npy")
gts_language_npy_path = os.path.join(dataset.model_path, "test", "gt_language_npy")
os.makedirs(render_language_path, exist_ok=True)
os.makedirs(gts_language_path, exist_ok=True)
os.makedirs(render_language_npy_path, exist_ok=True)
os.makedirs(gts_language_npy_path, exist_ok=True)
os.makedirs(render_instance_path, exist_ok=True)
os.makedirs(render_instance_npy_path, exist_ok=True)
all_language_feature = torch.stack(all_language_feature)
all_instance_feature = torch.stack(all_instance_feature)
if len(all_gt_language_feature):
all_gt_language_feature = torch.stack(all_gt_language_feature)
if render_cfg.normalized:
all_language_feature = torch.clamp(all_language_feature, min=-1, max=2)
min_value = torch.min(all_language_feature)
max_value = torch.max(all_language_feature)
normalized_language_feature = (all_language_feature - min_value) / (max_value - min_value)
pca_language_feature = permuted_pca(normalized_language_feature)
for idx, view in enumerate(self.scene.getTrainCameras()):
torchvision.utils.save_image(normalized_language_feature[idx], os.path.join(render_language_path, view.image_name + ".png"))
all_instance_feature = torch.clamp(all_instance_feature, min=-1, max=2)
min_value = torch.min(all_instance_feature)
max_value = torch.max(all_instance_feature)
normalized_instance_feature = (all_instance_feature - min_value) / (max_value - min_value)
pca_instance_feature = permuted_pca(normalized_instance_feature)
for idx, view in enumerate(self.scene.getTrainCameras()):
torchvision.utils.save_image(
# pca_instance_feature[idx],
normalized_instance_feature[idx],
os.path.join(render_instance_path, view.image_name + ".png")
)
if os.path.exists(lf_path):
all_gt_language_feature = torch.clamp(all_gt_language_feature, min=-1, max=2)
min_value = torch.min(all_gt_language_feature)
max_value = torch.max(all_gt_language_feature)
normalized_gt_language = (all_gt_language_feature - min_value) / (max_value - min_value)
pca_gt_language = permuted_pca(normalized_gt_language)
for idx, view in enumerate(self.scene.getTrainCameras()):
torchvision.utils.save_image(
pca_gt_language[idx],
os.path.join(gts_language_path, view.image_name + ".png")
)
else:
breakpoint()
all_language_feature = torch.clamp(all_language_feature, min=-1, max=2)
pca_language_feature = permuted_pca(all_language_feature)
for idx, view in enumerate(self.scene.getTrainCameras()):
torchvision.utils.save_image(
pca_language_feature[idx],
os.path.join(render_language_path, view.image_name + ".png")
)
all_instance_feature = torch.clamp(all_instance_feature, min=-1, max=2)
pca_instance_feature = permuted_pca(all_instance_feature)
for idx, view in enumerate(self.scene.getTrainCameras()):
torchvision.utils.save_image(
pca_instance_feature[idx],
os.path.join(render_instance_path, view.image_name + ".png")
)
if os.path.exists(lf_path):
all_gt_language_feature = torch.clamp(all_gt_language_feature, min=-1, max=2)
pca_gt_language = permuted_pca(all_gt_language_feature)
for idx, view in enumerate(self.scene.getTrainCameras()):
torchvision.utils.save_image(
pca_gt_language[idx],
os.path.join(gts_language_path, view.image_name + ".png")
)
for idx, view in enumerate(self.scene.getTrainCameras()):
np.save(
os.path.join(render_language_npy_path, view.image_name + ".npy"),
all_language_feature[idx].permute(1, 2, 0).cpu().numpy()
)
np.save(
os.path.join(render_instance_npy_path, view.image_name + ".npy"),
all_instance_feature[idx].permute(1, 2, 0).cpu().numpy()
)
if os.path.exists(lf_path):
np.save(
os.path.join(gts_language_npy_path, view.image_name + ".npy"),
all_gt_language_feature[idx].permute(1, 2, 0).cpu().numpy()
)
for idx, view in enumerate(tqdm(self.scene.getTrainCameras(), desc="TSDF Fusion progress")):
ref_depth = depths_tsdf_fusion[idx].cuda()
if view.mask is not None:
ref_depth[view.mask.squeeze() < 0.5] = 0
ref_depth[ref_depth > max_depth] = 0
ref_depth = ref_depth.detach().cpu().numpy()
pose = np.identity(4)
pose[:3, :3] = view.R.transpose(-1, -2)
pose[:3, 3] = view.T
color_feature = o3d.io.read_image(os.path.join(render_language_path, view.image_name + ".png"))
depth = o3d.geometry.Image((ref_depth * 1000).astype(np.uint16))
rgbd_feature = o3d.geometry.RGBDImage.create_from_color_and_depth(
color_feature, depth, depth_scale=1000.0, depth_trunc=max_depth, convert_rgb_to_intensity=False
)
volume_feature.integrate(
rgbd_feature,
o3d.camera.PinholeCameraIntrinsic(W, H, view.Fx, view.Fy, view.Cx, view.Cy),
pose
)
num_cluster = 3
mesh_feature = volume_feature.extract_triangle_mesh()
o3d.io.write_triangle_mesh(os.path.join(path, "feature_tsdf_fusion.ply"), mesh_feature,
write_triangle_uvs=True, write_vertex_colors=True,
write_vertex_normals=True)
mesh_feature = post_process_mesh(mesh_feature, num_cluster)
o3d.io.write_triangle_mesh(os.path.join(path, "feature_tsdf_fusion_post.ply"), mesh_feature,
write_triangle_uvs=True, write_vertex_colors=True,
write_vertex_normals=True)
def eval(self):
cfg = self.cfg
dataset = cfg.gaussian.dataset
opt = cfg.gaussian.opt
pipe = cfg.gaussian.pipe
device = cfg.gaussian.dataset.data_device
dataset.source_path = cfg.gaussian.eval.eval_data_path
logging.info("Evaling " + dataset.model_path)
safe_state(cfg.gaussian.quiet)
# optimizing poses:
self.gaussians = GaussianModel(cfg.gaussian.dataset.sh_degree)
self.scene = Scene(cfg.gaussian.dataset, self.gaussians, load_iteration=cfg.pipeline.load_iteration, shuffle=False)
self.gaussians.training_setup(opt, device)
self.scene.loaded_iter = None
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device=device)
render_path = os.path.join(dataset.model_path, "eval", "renders_rgb")
render_depth_path = os.path.join(dataset.model_path, "eval", "renders_depth")
render_depth_npy_path = os.path.join(dataset.model_path, "eval", "renders_depth_npy")
render_normal_path = os.path.join(dataset.model_path, "eval", "renders_normal")
render_lang_path = os.path.join(dataset.model_path, "eval", "renders_lang")
render_instance_path = os.path.join(dataset.model_path, "eval", "renders_instance")
render_lang_npy_path = os.path.join(dataset.model_path, "eval", "renders_lang_npy")
render_instance_npy_path = os.path.join(dataset.model_path, "eval", "renders_instance_npy")
os.makedirs(render_path, exist_ok=True)
os.makedirs(render_depth_path, exist_ok=True)
os.makedirs(render_depth_npy_path, exist_ok=True)
os.makedirs(render_normal_path, exist_ok=True)
os.makedirs(render_lang_path, exist_ok=True)
os.makedirs(render_instance_path, exist_ok=True)
os.makedirs(render_lang_npy_path, exist_ok=True)
os.makedirs(render_instance_npy_path, exist_ok=True)
self.gaussians.change_reqiures_grad("pose_only", iteration=0, quiet=False)
for cam_idx, cam in enumerate(self.scene.getTrainCameras().copy()):
# optim pose iter:
first_iter = 1
ema_loss_for_log = 0.0
include_feature = True
progress_bar = tqdm(range(first_iter, cfg.gaussian.eval.pose_optim_iter + 1))
logging.info(f"Optimizing camera {cam_idx}")
iter_start = torch.cuda.Event(enable_timing=True)
iter_end = torch.cuda.Event(enable_timing=True)
for iteration in progress_bar:
iter_start.record()
self.gaussians.update_learning_rate(iteration)
pose = self.gaussians.get_RT(self.gaussians.index_mapping[cam.uid])
bg = torch.rand((3), device="cuda") if opt.random_background else background
render_pkg = render(cam, self.gaussians, pipe, bg, app_model=None,
return_plane=False, return_depth_normal=False,
include_feature=include_feature, camera_pose=pose)
image = render_pkg["render"]
gt_image, _ = cam.get_image()
ssim_loss = (1.0 - ssim(image, gt_image))
Ll1 = l1_loss(image, gt_image)
image_loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * ssim_loss
image_loss.backward()
iter_end.record()
with torch.no_grad():
ema_loss_for_log = 0.4 * image_loss + 0.6 * ema_loss_for_log
if iteration % 10 == 0:
loss_dict = {
"Loss": f"{ema_loss_for_log:.5f}"
}
progress_bar.set_postfix(loss_dict)
progress_bar.update(10)
if iteration < cfg.gaussian.eval.pose_optim_iter:
self.gaussians.cam_optimizer.step()
self.gaussians.cam_optimizer.zero_grad(set_to_none=True)
if iteration == cfg.gaussian.eval.pose_optim_iter:
# saving results:
progress_bar.close()
logging.info("Saving results...")
language_feature, instance_feature = render_pkg["language_feature"], render_pkg["instance_feature"]
image_tosave = torch.cat([image, gt_image], dim=2).clamp(0, 1)
torchvision.utils.save_image(image_tosave, os.path.join(render_path, cam.image_name + ".png"))
min_value = torch.min(language_feature)
max_value = torch.max(language_feature)
normalized_language_feature = (language_feature - min_value) / (max_value - min_value)
torchvision.utils.save_image(permuted_pca(normalized_language_feature),
os.path.join(render_lang_path, cam.image_name + ".png"))
np.save(os.path.join(render_lang_npy_path, cam.image_name + ".npy"),
language_feature.permute(1, 2, 0).cpu().numpy())
min_value = torch.min(instance_feature)
max_value = torch.max(instance_feature)
normalized_instance_feature = (instance_feature - min_value) / (max_value - min_value)
torchvision.utils.save_image(permuted_pca(normalized_instance_feature),
os.path.join(render_instance_path, cam.image_name + ".png"))
np.save(os.path.join(render_instance_npy_path, cam.image_name + ".npy"),
instance_feature.permute(1, 2, 0).cpu().numpy())
torch.cuda.empty_cache()
|