File size: 13,228 Bytes
684943d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import logging
import os
import shutil
import time
from abc import ABC, abstractmethod
from pathlib import Path

import numpy as np
import open3d as o3d
import torch

from dust3r.cloud_opt import GlobalAlignerMode, global_aligner
from dust3r.image_pairs import make_pairs
from dust3r.inference import inference
from dust3r.utils.device import to_numpy
from dust3r.utils.geometry import inv
from mast3r.model import AsymmetricMASt3R
from utils.sfm_utils import (compute_co_vis_masks, get_sorted_image_files,
                             load_images, save_extrinsic, save_intrinsics,
                             save_points3D)

from .utils import prepare_input, prepare_output, storePly


class BaseEstimator(ABC):
    @abstractmethod
    def get_poses():
        pass


class ColmapEstimator(BaseEstimator):
    def __init__(self, cfg):
        self.cfg = cfg
        
    def get_poses(self, camera_model="OPENCV", use_gpu=True):
        save_path = self.cfg.pipeline.data_path
        database_path = os.path.join(save_path, "distorted", "database.db")
        raw_img_path = os.path.join(save_path, "input")
        sparse_path = os.path.join(save_path, "distorted", "sparse")
        os.makedirs(os.path.join(save_path, "distorted"), exist_ok=True)
        os.makedirs(sparse_path, exist_ok=True)

        feat_extraction_cmd = [
            "colmap", "feature_extractor", 
            "--database_path", database_path,
            "--image_path", raw_img_path,
            "--ImageReader.single_camera", "1",
            "--ImageReader.camera_model", camera_model,
            "--SiftExtraction.use_gpu", str(int(use_gpu))
        ]
        feat_extraction_cmd = " ".join(feat_extraction_cmd)
        exit_code = os.system(feat_extraction_cmd)
        if exit_code != 0:
            logging.error(f"Feature extraction failed with code {exit_code}. Exiting.")
            exit(exit_code)
        
        feat_matching_cmd = [
            "colmap", "exhaustive_matcher",
            "--database_path", database_path,
            "--SiftMatching.use_gpu", str(int(use_gpu))
        ]
        feat_matching_cmd = " ".join(feat_matching_cmd)
        exit_code = os.system(feat_matching_cmd)
        if exit_code != 0:
            logging.error(f"Feature matching failed with code {exit_code}. Exiting.")
            exit(exit_code)
        
        mapper_cmd = [
            "colmap", "mapper",
            "--database_path", database_path,
            "--image_path", raw_img_path,
            "--output_path", sparse_path,
            "--Mapper.ba_global_function_tolerance=0.000001"
        ]
        mapper_cmd = " ".join(mapper_cmd)
        exit_code = os.system(mapper_cmd)
        if exit_code != 0:
            logging.error(f"Mapper failed with code {exit_code}. Exiting.")
            exit(exit_code)

        img_undist_cmd = [
            "colmap", "image_undistorter",
            "--image_path", raw_img_path,
            "--input_path", os.path.join(sparse_path, "0"),
            "--output_path", save_path,
            "--output_type", "COLMAP"
        ]
        img_undist_cmd = " ".join(img_undist_cmd)
        exit_code = os.system(img_undist_cmd)
        if exit_code != 0:
            logging.error(f"Mapper failed with code {exit_code}. Exiting.")
            exit(exit_code)
        
        # move data:
        curr_path = os.path.join(save_path, "sparse")
        dest_path = os.path.join(curr_path, "0")  
        os.makedirs(dest_path, exist_ok=True)
        files = list(filter(lambda x: x != "0", os.listdir(curr_path)))
        for file in files:
            src_file = os.path.join(curr_path, file)
            dest_file = os.path.join(dest_path, file)
            shutil.move(src_file, dest_file)


class MASt3REstimator(BaseEstimator):
    def __init__(self, cfg):
        self.cfg = cfg
        self.device = cfg.pose_estimator.device
        self.model = AsymmetricMASt3R.from_pretrained(cfg.pose_estimator.model_path).to(self.device)

    def get_poses(self):
        save_path = self.cfg.pipeline.data_path
        co_vis_dsp = self.cfg.pose_estimator.co_vis_dsp
        sparse_path = os.path.join(save_path, "sparse", "0")
        os.makedirs(sparse_path, exist_ok=True)
        image_dir = Path(save_path) / "input"
        image_files, image_suffix = get_sorted_image_files(image_dir)
        n_views = len(image_files)
        images, org_imgs_shape = load_images(image_files, size=512)

        logging.info(">> Making pairs...")
        pairs = make_pairs(images)
        logging.info(">> Inference...")
        output = inference(pairs, self.model, self.device, batch_size=1, verbose=True)
        logging.info(f'>> Global alignment...')
        scene = global_aligner(output, device=self.device, mode=GlobalAlignerMode.PointCloudOptimizer)

        extrinsics_w2c = inv(to_numpy(scene.get_im_poses()))
        intrinsics = to_numpy(scene.get_intrinsics())
        focals = to_numpy(scene.get_focals())
        imgs = np.array(scene.imgs)
        pts3d = to_numpy(scene.get_pts3d())
        pts3d = np.array(pts3d)
        depthmaps = to_numpy(scene.im_depthmaps.detach().cpu().numpy())
        values = [param.detach().cpu().numpy() for param in scene.im_conf]
        confs = np.array(values)
        
        logging.info(f'>> Confiden-aware Ranking...')
        avg_conf_scores = confs.mean(axis=(1, 2))
        sorted_conf_indices = np.argsort(avg_conf_scores)[::-1]
        sorted_conf_avg_conf_scores = avg_conf_scores[sorted_conf_indices]
        logging.info("Sorted indices:", str(sorted_conf_indices))
        logging.info("Sorted average confidence scores:", str(sorted_conf_avg_conf_scores))

        logging.info(f'>> Calculate the co-visibility mask...')
        depth_thre = self.cfg.pose_estimator.depth_thre
        if  depth_thre > 0:
            overlapping_masks = compute_co_vis_masks(sorted_conf_indices, depthmaps, pts3d, intrinsics, extrinsics_w2c, imgs.shape, depth_threshold=depth_thre)
            overlapping_masks = ~overlapping_masks
        else:
            co_vis_dsp = False
            overlapping_masks = None

        focals = np.repeat(focals[0], n_views)
        logging.info(f'>> Saving results...')
        save_extrinsic(Path(sparse_path), extrinsics_w2c, image_files, image_suffix)
        save_intrinsics(Path(sparse_path), focals, org_imgs_shape, imgs.shape, save_focals=True)
        pts_num = save_points3D(Path(sparse_path), imgs, pts3d, confs.reshape(pts3d.shape[0], -1), overlapping_masks, use_masks=co_vis_dsp, save_all_pts=True, save_txt_path=save_path, depth_threshold=depth_thre)
        # save_images_and_masks(Path(sparse_path), n_views, imgs, overlapping_masks, image_files, image_suffix)
        logging.info(f'MASt3R Reconstruction is successfully converted to COLMAP files in: {sparse_path}')
        logging.info(f'Number of points: {pts3d.reshape(-1, 3).shape[0]}')    
        logging.info(f'Number of points after downsampling: {pts_num}')
            
    
class CUT3REstimator(BaseEstimator):
    def __init__(self, cfg):
        self.cfg = cfg  
        self.device = cfg.pose_estimator.device

    def get_poses(self):
        cfg = self.cfg
        if self.device == "cuda" and not torch.cuda.is_available():
            print("cuda not available. switching to cpu.")
            self.device = "cpu"
        
        from cut3r.dust3r.inference import inference
        from cut3r.dust3r.model import ARCroco3DStereo
        
        save_path = self.cfg.pipeline.data_path
        img_folder_path = os.path.join(save_path, "input")
        img_paths = [os.path.join(img_folder_path, img_name) for img_name in os.listdir(img_folder_path)]
        img_mask = [True] * len(img_paths)
        views, orig_shape = prepare_input(
            img_paths=img_paths,
            img_mask=img_mask,
            size=512,
            revisit=1,
            update=True,
        )
        model = ARCroco3DStereo.from_pretrained(cfg.pose_estimator.model_path).to(self.device)
        model.eval()

        logging.info("Running inference...")
        start_time = time.time()
        outputs, state_args = inference(views, model, self.device)
        total_time = time.time() - start_time
        per_frame_time = total_time / len(views)
        print(
            f"Inference completed in {total_time:.2f} seconds (average {per_frame_time:.2f} s per frame)."
        )

        pts3ds_other, colors, conf, cam_dict = prepare_output(
            outputs, orig_shape, save_path, 1, True
        )
        conf = torch.cat(conf, dim=0)
        if self.cfg.pipeline.selection:
            conf_score = conf.mean(dim=(1, 2))
            chunk_num = self.cfg.pipeline.chunk_num
            keep_num_per_chunk = self.cfg.pipeline.keep_num_per_chunk
            conf_scores_tuple = conf_score.chunk(chunk_num)
            selected_idxs = []
            total_conf_len = 0
            for conf_scores_chunk in conf_scores_tuple:
                _, idxs = conf_scores_chunk.sort(descending=True)
                idxs = idxs[:keep_num_per_chunk]
                selected_idxs += [(idx + total_conf_len).item() for idx in idxs]
                total_conf_len += len(conf_scores_chunk)
            self.cfg.pipeline.selected_idxs = sorted(selected_idxs)
        
        pts3ds_to_save = [pts3ds_other[idx].cpu().numpy() for idx in self.cfg.pipeline.selected_idxs]
        colors_to_save = [colors[idx].cpu().numpy() for idx in self.cfg.pipeline.selected_idxs]
        all_pts3ds = np.stack(pts3ds_to_save).reshape(-1, 3)
        all_colors = np.stack(colors_to_save).reshape(-1, 3)
        storePly(os.path.join(save_path, "points3D.ply"), all_pts3ds, all_colors)

class VGGTEstimator(BaseEstimator):
    def __init__(self, cfg):
        self.cfg = cfg
        self.device = cfg.pose_estimator.device

    def get_poses(self):
        from vggt.models.vggt import VGGT
        from vggt.utils.geometry import unproject_depth_map_to_point_map
        from vggt.utils.load_fn import load_and_preprocess_images
        from vggt.utils.pose_enc import pose_encoding_to_extri_intri

        cfg = self.cfg
        if self.device == "cuda" and not torch.cuda.is_available():
            print("cuda not available. switching to cpu.")
            self.device = "cpu"
        
        dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] >= 8 else torch.float16
        logging.info("Loading vggt...")
        model = VGGT.from_pretrained("facebook/VGGT-1B").to(self.device)
        save_path = self.cfg.pipeline.data_path
        img_folder_path = os.path.join(save_path, "input")
        img_paths = [os.path.join(img_folder_path, img_name) for img_name in os.listdir(img_folder_path)]
        images = load_and_preprocess_images(img_paths).to(self.device)

        with torch.no_grad(), torch.amp.autocast("cuda", dtype=dtype):
            images = images[None]
            aggregated_tokens_list, ps_idx = model.aggregator(images)
            pose_enc = model.camera_head(aggregated_tokens_list)[-1]
            extrinsic, intrinsic = pose_encoding_to_extri_intri(pose_enc, images.shape[-2:])
            depth_map, depth_conf = model.depth_head(aggregated_tokens_list, images, ps_idx)
            point_map = unproject_depth_map_to_point_map(
                depth_map.squeeze(0), 
                extrinsic.squeeze(0), 
                intrinsic.squeeze(0)
            )
            extrinsic, intrinsic = extrinsic.squeeze(), intrinsic.squeeze()
            extrinsics_w2c = torch.eye(4)[None].repeat(len(extrinsic), 1, 1)
            extrinsics_w2c[:, :3, :4] = extrinsic.cpu()
            extrinsics_w2c = extrinsics_w2c.cpu().numpy()
            intrinsics = intrinsic.cpu().numpy()

            scaled_y, scaled_x = images.shape[-2:]
            intrinsics[:, 0, 0] *= 720 / scaled_x
            intrinsics[:, 1, 1] *= 480 / scaled_y
            intrinsics[:, 0, 2] *= 720 / scaled_x
            intrinsics[:, 1, 2] *= 480 / scaled_y

            images = torch.stack([images[:, 0], images[:, -1]], dim=1)
            point_map = np.stack([point_map[0], point_map[-1]], axis=0)
            colors = images.permute(0, 1, 3, 4, 2).detach().cpu().numpy()
            colors = colors.reshape(-1, 3)
            point_map = point_map.reshape(-1, 3).astype(np.float32)
        
        pcd = o3d.geometry.PointCloud()
        pcd.points = o3d.utility.Vector3dVector(point_map)
        pcd.colors = o3d.utility.Vector3dVector(colors)
        o3d.io.write_point_cloud(os.path.join(save_path, "points3D.ply"), pcd)
        camera_dir = os.path.join(save_path, "camera")
        os.makedirs(camera_dir, exist_ok=True)
        for i, (w2c, intrinsic) in enumerate(zip(extrinsics_w2c, intrinsics)):
            c2w = np.eye(4)
            c2w[:3, :3] = w2c[:3, :3].T
            c2w[:3, 3] = - w2c[:3, :3].T @ w2c[:3, 3]
            np.savez(
                os.path.join(camera_dir, f"{i+1:04d}.npz"), 
                pose=c2w,
                intrinsics=intrinsic
            )

def get_pose_estimator(cfg):
    POSE_ESTIMATOR = {
        "colmap": ColmapEstimator, 
        "mast3r": MASt3REstimator,
        "cut3r": CUT3REstimator,
        "vggt": VGGTEstimator,
    }
    return POSE_ESTIMATOR[cfg.pose_estimator.type](cfg)