File size: 7,561 Bytes
684943d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import os
from copy import deepcopy

import numpy as np
import open3d as o3d
import torch


def storePly(path, xyz, rgb):
    pcd = o3d.geometry.PointCloud()
    pcd.points = o3d.utility.Vector3dVector(xyz)
    pcd.colors = o3d.utility.Vector3dVector(rgb)
    o3d.io.write_point_cloud(path, pcd)
    
    
def prepare_input(
    img_paths, img_mask, size, raymaps=None, raymap_mask=None, revisit=1, update=True
):
    """
    Prepare input views for inference from a list of image paths.

    Args:
        img_paths (list): List of image file paths.
        img_mask (list of bool): Flags indicating valid images.
        size (int): Target image size.
        raymaps (list, optional): List of ray maps.
        raymap_mask (list, optional): Flags indicating valid ray maps.
        revisit (int): How many times to revisit each view.
        update (bool): Whether to update the state on revisits.

    Returns:
        list: A list of view dictionaries.
    """
    # Import image loader (delayed import needed after adding ckpt path).
    from cut3r.dust3r.utils.image import load_images

    images, orig_shape = load_images(img_paths, size=size)
    views = []

    if raymaps is None and raymap_mask is None:
        # Only images are provided.
        for i in range(len(images)):
            view = {
                "img": images[i]["img"],
                "ray_map": torch.full(
                    (
                        images[i]["img"].shape[0],
                        6,
                        images[i]["img"].shape[-2],
                        images[i]["img"].shape[-1],
                    ),
                    torch.nan,
                ),
                "true_shape": torch.from_numpy(images[i]["true_shape"]),
                "idx": i,
                "instance": str(i),
                "camera_pose": torch.from_numpy(np.eye(4, dtype=np.float32)).unsqueeze(
                    0
                ),
                "img_mask": torch.tensor(True).unsqueeze(0),
                "ray_mask": torch.tensor(False).unsqueeze(0),
                "update": torch.tensor(True).unsqueeze(0),
                "reset": torch.tensor(False).unsqueeze(0),
            }
            views.append(view)
    else:
        # Combine images and raymaps.
        num_views = len(images) + len(raymaps)
        assert len(img_mask) == len(raymap_mask) == num_views
        assert sum(img_mask) == len(images) and sum(raymap_mask) == len(raymaps)

        j = 0
        k = 0
        for i in range(num_views):
            view = {
                "img": (
                    images[j]["img"]
                    if img_mask[i]
                    else torch.full_like(images[0]["img"], torch.nan)
                ),
                "ray_map": (
                    raymaps[k]
                    if raymap_mask[i]
                    else torch.full_like(raymaps[0], torch.nan)
                ),
                "true_shape": (
                    torch.from_numpy(images[j]["true_shape"])
                    if img_mask[i]
                    else torch.from_numpy(np.int32([raymaps[k].shape[1:-1][::-1]]))
                ),
                "idx": i,
                "instance": str(i),
                "camera_pose": torch.from_numpy(np.eye(4, dtype=np.float32)).unsqueeze(
                    0
                ),
                "img_mask": torch.tensor(img_mask[i]).unsqueeze(0),
                "ray_mask": torch.tensor(raymap_mask[i]).unsqueeze(0),
                "update": torch.tensor(img_mask[i]).unsqueeze(0),
                "reset": torch.tensor(False).unsqueeze(0),
            }
            if img_mask[i]:
                j += 1
            if raymap_mask[i]:
                k += 1
            views.append(view)
        assert j == len(images) and k == len(raymaps)

    if revisit > 1:
        new_views = []
        for r in range(revisit):
            for i, view in enumerate(views):
                new_view = deepcopy(view)
                new_view["idx"] = r * len(views) + i
                new_view["instance"] = str(r * len(views) + i)
                if r > 0 and not update:
                    new_view["update"] = torch.tensor(False).unsqueeze(0)
                new_views.append(new_view)
        return new_views

    return views, orig_shape
    
    

def prepare_output(outputs, orig_shape, outdir, revisit=1, use_pose=True):
    """
    Process inference outputs to generate point clouds and camera parameters for visualization.

    Args:
        outputs (dict): Inference outputs.
        revisit (int): Number of revisits per view.
        use_pose (bool): Whether to transform points using camera pose.

    Returns:
        tuple: (points, colors, confidence, camera parameters dictionary)
    """
    from cut3r.dust3r.post_process import estimate_focal_knowing_depth
    from cut3r.dust3r.utils.camera import pose_encoding_to_camera
    from cut3r.dust3r.utils.geometry import geotrf

    # Only keep the outputs corresponding to one full pass.
    valid_length = len(outputs["pred"]) // revisit
    outputs["pred"] = outputs["pred"][-valid_length:]
    outputs["views"] = outputs["views"][-valid_length:]

    pts3ds_self_ls = [output["pts3d_in_self_view"].cpu() for output in outputs["pred"]]
    pts3ds_other = [output["pts3d_in_other_view"].cpu() for output in outputs["pred"]]
    conf_self = [output["conf_self"].cpu() for output in outputs["pred"]]
    conf_other = [output["conf"].cpu() for output in outputs["pred"]]
    pts3ds_self = torch.cat(pts3ds_self_ls, 0)

    # Recover camera poses.
    pr_poses = [
        pose_encoding_to_camera(pred["camera_pose"].clone()).cpu()
        for pred in outputs["pred"]
    ]
    R_c2w = torch.cat([pr_pose[:, :3, :3] for pr_pose in pr_poses], 0)
    t_c2w = torch.cat([pr_pose[:, :3, 3] for pr_pose in pr_poses], 0)

    if use_pose:
        transformed_pts3ds_other = []
        for pose, pself in zip(pr_poses, pts3ds_self):
            transformed_pts3ds_other.append(geotrf(pose, pself.unsqueeze(0)))
        pts3ds_other = transformed_pts3ds_other
        conf_other = conf_self

    # Estimate focal length based on depth.
    B, H, W, _ = pts3ds_self.shape
    orig_H, orig_W = orig_shape
    pp = torch.tensor([orig_W // 2, orig_H // 2], device=pts3ds_self.device).float().repeat(B, 1)
    focal = estimate_focal_knowing_depth(pts3ds_self, pp, focal_mode="weiszfeld")
    # focal = focal.mean().repeat(len(focal))
    focal_x = focal * orig_W / W
    focal_y = focal * orig_H / H

    colors = [
        0.5 * (output["img"].permute(0, 2, 3, 1) + 1.0) for output in outputs["views"]
    ]

    cam_dict = {
        "focal": focal.cpu().numpy(),
        "pp": pp.cpu().numpy(),
        "R": R_c2w.cpu().numpy(),
        "t": t_c2w.cpu().numpy(),
    }

    cam2world_tosave = torch.cat(pr_poses)  # B, 4, 4
    intrinsics_tosave = (
        torch.eye(3).unsqueeze(0).repeat(cam2world_tosave.shape[0], 1, 1)
    )  # B, 3, 3
    intrinsics_tosave[:, 0, 0] = focal_x.detach().cpu()
    intrinsics_tosave[:, 1, 1] = focal_y.detach().cpu() 
    intrinsics_tosave[:, 0, 2] = pp[:, 0]
    intrinsics_tosave[:, 1, 2] = pp[:, 1]

    os.makedirs(os.path.join(outdir, "camera"), exist_ok=True)

    for f_id in range(len(cam2world_tosave)):
        c2w = cam2world_tosave[f_id].cpu().numpy()
        intrins = intrinsics_tosave[f_id].cpu().numpy()
        np.savez(
            os.path.join(outdir, "camera", f"{f_id+1:04d}.npz"),
            pose=c2w,
            intrinsics=intrins,
        )

    return pts3ds_other, colors, conf_other, cam_dict