File size: 7,809 Bytes
684943d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact  [email protected]
#

import json
import os
import random

import numpy as np
import torch

from field_construction.scene.dataset_readers import sceneLoadTypeCallbacks
from field_construction.scene.gaussian_model import GaussianModel
from field_construction.utils.camera_utils import (camera_to_JSON,
                                                   cameraList_from_camInfos)
from field_construction.utils.system_utils import searchForMaxIteration


class Scene:
    gaussians: GaussianModel

    def __init__(self, args, gaussians: GaussianModel, load_iteration=None, shuffle=True,
                 resolution_scales=[1.0]):
        """b
        :param path: Path to colmap scene main folder.
        """
        self.model_path = args.model_path
        os.makedirs(self.model_path, exist_ok=True)
        self.loaded_iter = None
        self.gaussians = gaussians
        self.source_path = args.source_path

        if load_iteration:
            if load_iteration == -1:
                self.loaded_iter = searchForMaxIteration(os.path.join(self.model_path, "point_cloud"))
            else:
                self.loaded_iter = load_iteration
            print("Loading trained model at iteration {}".format(self.loaded_iter))

        self.train_cameras = {}
        self.test_cameras = {}

        if os.path.exists(os.path.join(args.source_path, "sparse")):
            scene_info = sceneLoadTypeCallbacks["Colmap"](args.source_path, "images", args.eval, loaded_iter=self.loaded_iter)
        elif os.path.exists(os.path.join(args.source_path, "transforms_train.json")):
            print("Found transforms_train.json file, assuming Blender data set!")
            scene_info = sceneLoadTypeCallbacks["Blender"](args.source_path, args.white_background, args.eval)
        else:
            print("Assuming CUT3R data set...")
            scene_info = sceneLoadTypeCallbacks["CUT3R"](args.source_path, args.white_background, args.eval, loaded_iter=self.loaded_iter)

        if not self.loaded_iter:
            with open(scene_info.ply_path, 'rb') as src_file, open(os.path.join(self.model_path, "input.ply"), 'wb') as dest_file:
                dest_file.write(src_file.read())
            json_cams = []
            camlist = []
            if scene_info.test_cameras:
                camlist.extend(scene_info.test_cameras)
            if scene_info.train_cameras:
                camlist.extend(scene_info.train_cameras)
            for id, cam in enumerate(camlist):
                json_cams.append(camera_to_JSON(id, cam))
            with open(os.path.join(self.model_path, "cameras.json"), 'w') as file:
                json.dump(json_cams, file)

        if shuffle:
            random.shuffle(scene_info.train_cameras)  # Multi-res consistent random shuffling
            random.shuffle(scene_info.test_cameras)  # Multi-res consistent random shuffling

        self.cameras_extent = scene_info.nerf_normalization["radius"]
        print(f"cameras_extent {self.cameras_extent}")

        self.multi_view_num = args.multi_view_num
        for resolution_scale in resolution_scales:
            print("Loading Training Cameras")
            self.train_cameras[resolution_scale] = cameraList_from_camInfos(scene_info.train_cameras, resolution_scale,
                                                                            args)
            print("Loading Test Cameras")
            self.test_cameras[resolution_scale] = cameraList_from_camInfos(scene_info.test_cameras, resolution_scale,
                                                                           args)

            print("computing nearest_id")
            self.world_view_transforms = []
            camera_centers = []
            center_rays = []
            for id, cur_cam in enumerate(self.train_cameras[resolution_scale]):
                self.world_view_transforms.append(cur_cam.world_view_transform)
                camera_centers.append(cur_cam.camera_center)
                R = torch.tensor(cur_cam.R).float().cuda()
                T = torch.tensor(cur_cam.T).float().cuda()
                center_ray = torch.tensor([0.0, 0.0, 1.0]).float().cuda()
                center_ray = center_ray @ R.transpose(-1, -2)
                center_rays.append(center_ray)
            self.world_view_transforms = torch.stack(self.world_view_transforms)
            camera_centers = torch.stack(camera_centers, dim=0)
            center_rays = torch.stack(center_rays, dim=0)
            center_rays = torch.nn.functional.normalize(center_rays, dim=-1)
            diss = torch.norm(camera_centers[:, None] - camera_centers[None], dim=-1).detach().cpu().numpy()
            tmp = torch.sum(center_rays[:, None] * center_rays[None], dim=-1)
            angles = torch.arccos(tmp) * 180 / 3.14159
            angles = angles.detach().cpu().numpy()
            with open(os.path.join(self.model_path, "multi_view.json"), 'w') as file:
                for id, cur_cam in enumerate(self.train_cameras[resolution_scale]):
                    sorted_indices = np.lexsort((angles[id], diss[id]))
                    # sorted_indices = np.lexsort((diss[id], angles[id]))
                    mask = (angles[id][sorted_indices] < args.multi_view_max_angle) & \
                           (diss[id][sorted_indices] > args.multi_view_min_dis) & \
                           (diss[id][sorted_indices] < args.multi_view_max_dis)
                    sorted_indices = sorted_indices[mask]
                    multi_view_num = min(self.multi_view_num, len(sorted_indices))
                    json_d = {'ref_name': cur_cam.image_name, 'nearest_name': []}
                    for index in sorted_indices[:multi_view_num]:
                        cur_cam.nearest_id.append(index)
                        cur_cam.nearest_names.append(self.train_cameras[resolution_scale][index].image_name)
                        json_d["nearest_name"].append(self.train_cameras[resolution_scale][index].image_name)
                    json_str = json.dumps(json_d, separators=(',', ':'))
                    file.write(json_str)
                    file.write('\n')
                    # print(f"frame {cur_cam.image_name}, neareast {cur_cam.nearest_names}, \
                    #       angle {angles[id][cur_cam.nearest_id]}, diss {diss[id][cur_cam.nearest_id]}")

        if self.loaded_iter:
            self.gaussians.load_ply(os.path.join(self.model_path,
                                                 "point_cloud",
                                                 "iteration_" + str(self.loaded_iter),
                                                 "point_cloud.ply"))
        else:
            self.gaussians.create_from_pcd(scene_info.point_cloud, self.cameras_extent)
        self.gaussians.init_RT_seq(self.train_cameras)

    def save(self, iteration, mask=None, include_feature=False, finetune=False):
        if include_feature:
            point_cloud_path = os.path.join(self.model_path, "point_cloud/iteration_{}".format(iteration))
        else:
            point_cloud_path = os.path.join(self.model_path, "point_cloud/iteration_{}".format(iteration))
        if finetune:
            self.gaussians.save_ply(os.path.join(point_cloud_path, "finetune.ply"), mask, include_feature)
        else:
            self.gaussians.save_ply(os.path.join(point_cloud_path, "point_cloud.ply"), mask, include_feature)

    def getTrainCameras(self, scale=1.0):
        return self.train_cameras[scale]

    def getTestCameras(self, scale=1.0):
        return self.test_cameras[scale]