File size: 9,041 Bytes
684943d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact  [email protected]
#

import copy
import os

import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
from torch import nn

from field_construction.utils.general_utils import PILtoTorch
from field_construction.utils.graphics_utils import (
    fov2focal, getProjectionMatrix, getProjectionMatrixCenterShift,
    getWorld2View2)


def dilate(bin_img, ksize=6):
    pad = (ksize - 1) // 2
    bin_img = F.pad(bin_img, pad=[pad, pad, pad, pad], mode='reflect')
    out = F.max_pool2d(bin_img, kernel_size=ksize, stride=1, padding=0)
    return out

def erode(bin_img, ksize=12):
    out = 1 - dilate(1 - bin_img, ksize)
    return out

def process_image(image_path, resolution, ncc_scale):
    image = Image.open(image_path)
    if len(image.split()) > 3:
        resized_image_rgb = torch.cat([PILtoTorch(im, resolution) for im in image.split()[:3]], dim=0)
        loaded_mask = PILtoTorch(image.split()[3], resolution)
        gt_image = resized_image_rgb
        if ncc_scale != 1.0:
            ncc_resolution = (int(resolution[0]/ncc_scale), int(resolution[1]/ncc_scale))
            resized_image_rgb = torch.cat([PILtoTorch(im, ncc_resolution) for im in image.split()[:3]], dim=0)
    else:
        resized_image_rgb = PILtoTorch(image, resolution)
        loaded_mask = None
        gt_image = resized_image_rgb
        if ncc_scale != 1.0:
            ncc_resolution = (int(resolution[0]/ncc_scale), int(resolution[1]/ncc_scale))
            resized_image_rgb = PILtoTorch(image, ncc_resolution)
    gray_image = (0.299 * resized_image_rgb[0] + 0.587 * resized_image_rgb[1] + 0.114 * resized_image_rgb[2])[None]
    return gt_image, gray_image, loaded_mask

class Camera(nn.Module):
    def __init__(self, colmap_id, R, T, FoVx, FoVy,
                 image_width, image_height,
                 image_path, image_name, uid,
                 trans=np.array([0.0, 0.0, 0.0]), scale=1.0, 
                 ncc_scale=1.0,
                 preload_img=True, data_device = "cuda"
                 ):
        super(Camera, self).__init__()
        self.uid = uid
        self.nearest_id = []
        self.nearest_names = []
        self.colmap_id = colmap_id
        self.R = R
        self.T = T
        self.FoVx = FoVx
        self.FoVy = FoVy
        self.image_name = image_name
        self.image_path = image_path
        self.image_width = image_width
        self.image_height = image_height
        self.resolution = (image_width, image_height)
        self.Fx = fov2focal(FoVx, self.image_width)
        self.Fy = fov2focal(FoVy, self.image_height)
        self.Cx = 0.5 * self.image_width
        self.Cy = 0.5 * self.image_height

        base_image_path = "/".join(self.image_path.split("/")[:-2])
        self.normal_path = os.path.join(base_image_path, "normal", self.image_path.split("/")[-1])
        
        try:
            self.data_device = torch.device(data_device)
        except Exception as e:
            print(e)
            print(f"[Warning] Custom device {data_device} failed, fallback to default cuda device" )
            self.data_device = torch.device("cuda")

        self.original_image, self.image_gray, self.mask = None, None, None
        self.preload_img = preload_img
        self.ncc_scale = ncc_scale
        if self.preload_img:
            gt_image, gray_image, loaded_mask = process_image(self.image_path, self.resolution, ncc_scale)
            self.original_image = gt_image.to(self.data_device)
            self.original_image_gray = gray_image.to(self.data_device)
            self.mask = loaded_mask


        self.zfar = 100.0
        self.znear = 0.01

        self.trans = trans
        self.scale = scale

        self.world_view_transform = torch.tensor(getWorld2View2(R, T, trans, scale)).transpose(0, 1).cuda()
        self.projection_matrix = getProjectionMatrix(znear=self.znear, zfar=self.zfar, fovX=self.FoVx, fovY=self.FoVy).transpose(0,1).cuda()
        self.full_proj_transform = (self.world_view_transform.unsqueeze(0).bmm(self.projection_matrix.unsqueeze(0))).squeeze(0)
        self.camera_center = self.world_view_transform.inverse()[3, :3]
        self.plane_mask, self.non_plane_mask = None, None

    def get_image(self):
        if self.preload_img:
            return self.original_image.cuda(), self.original_image_gray.cuda()
        else:
            gt_image, gray_image, _ = process_image(self.image_path, self.resolution, self.ncc_scale)
            return gt_image.cuda(), gray_image.cuda()
    
    def get_normal(self):
        _normal = Image.open(self.normal_path)
        resized_normal = PILtoTorch(_normal, self.resolution)
        resized_normal = resized_normal[:3]
        _normal = - (resized_normal * 2 - 1).cuda()
        # normalize normal
        _normal = _normal.permute(1, 2, 0) @ (torch.linalg.inv(torch.as_tensor(self.R).float()).cuda())
        normal_gt = _normal.permute(2, 0, 1)
        normal_norm = torch.norm(normal_gt, dim=0, keepdim=True)
        normal_mask = ~((normal_norm > 1.1) | (normal_norm < 0.9))
        normal_gt /= normal_norm

        return normal_gt, normal_mask

        
    def get_language_feature(self, language_feature_dir):
        language_feature_name = os.path.join(language_feature_dir, self.image_name)
        feature_map = torch.from_numpy(np.load(language_feature_name + '_f.npy')).to(self.data_device)
        if len(feature_map.shape) < 4:
            feature_map = feature_map[None]
        point_feature = F.interpolate(feature_map, (self.image_height, self.image_width), mode="bilinear", align_corners=False)
        seg_map = torch.from_numpy(np.load(language_feature_name + "_s.npy")).to(self.data_device) # (h, w)
        seg_map = seg_map.long()
        mask = seg_map != -1
        # perform mask_pooling:
        point_feature = point_feature.squeeze(0) # (feat_dim, h, w)
        # for color_id in range(seg_map.max() + 1):
        #     point_feature[:, seg_map == color_id] = point_feature[:, seg_map == color_id].mean(dim=-1, keepdim=True)

        return point_feature, mask, seg_map

    def get_calib_matrix_nerf(self, scale=1.0):
        intrinsic_matrix = torch.tensor([[self.Fx/scale, 0, self.Cx/scale], [0, self.Fy/scale, self.Cy/scale], [0, 0, 1]]).float()
        extrinsic_matrix = self.world_view_transform.transpose(0,1).contiguous() # cam2world
        return intrinsic_matrix, extrinsic_matrix
    
    def get_rays(self, scale=1.0):
        W, H = int(self.image_width/scale), int(self.image_height/scale)
        ix, iy = torch.meshgrid(
            torch.arange(W), torch.arange(H), indexing='xy')
        rays_d = torch.stack(
                    [(ix-self.Cx/scale) / self.Fx * scale,
                    (iy-self.Cy/scale) / self.Fy * scale,
                    torch.ones_like(ix)], -1).float().cuda()
        return rays_d
    
    def get_k(self, scale=1.0):
        K = torch.tensor([[self.Fx / scale, 0, self.Cx / scale],
                        [0, self.Fy / scale, self.Cy / scale],
                        [0, 0, 1]]).cuda()
        return K
    
    def get_inv_k(self, scale=1.0):
        K_T = torch.tensor([[scale/self.Fx, 0, -self.Cx/self.Fx],
                            [0, scale/self.Fy, -self.Cy/self.Fy],
                            [0, 0, 1]]).cuda()
        return K_T

class MiniCam:
    def __init__(self, width, height, fovy, fovx, znear, zfar, world_view_transform, full_proj_transform):
        self.image_width = width
        self.image_height = height    
        self.FoVy = fovy
        self.FoVx = fovx
        self.znear = znear
        self.zfar = zfar
        self.world_view_transform = world_view_transform
        self.full_proj_transform = full_proj_transform
        view_inv = torch.inverse(self.world_view_transform)
        self.camera_center = view_inv[3][:3]

def sample_cam(cam_l: Camera, cam_r: Camera):
    cam = copy.copy(cam_l)

    Rt = np.zeros((4, 4))
    Rt[:3, :3] = cam_l.R.transpose()
    Rt[:3, 3] = cam_l.T
    Rt[3, 3] = 1.0

    Rt2 = np.zeros((4, 4))
    Rt2[:3, :3] = cam_r.R.transpose()
    Rt2[:3, 3] = cam_r.T
    Rt2[3, 3] = 1.0

    C2W = np.linalg.inv(Rt)
    C2W2 = np.linalg.inv(Rt2)
    w = np.random.rand()
    pose_c2w_at_unseen =  w * C2W + (1 - w) * C2W2
    Rt = np.linalg.inv(pose_c2w_at_unseen)
    cam.R = Rt[:3, :3]
    cam.T = Rt[:3, 3]

    cam.world_view_transform = torch.tensor(getWorld2View2(cam.R, cam.T, cam.trans, cam.scale)).transpose(0, 1).cuda()
    cam.projection_matrix = getProjectionMatrix(znear=cam.znear, zfar=cam.zfar, fovX=cam.FoVx, fovY=cam.FoVy).transpose(0,1).cuda()
    cam.full_proj_transform = (cam.world_view_transform.unsqueeze(0).bmm(cam.projection_matrix.unsqueeze(0))).squeeze(0)
    cam.camera_center = cam.world_view_transform.inverse()[3, :3]
    return cam