File size: 7,716 Bytes
684943d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
import torch
import glob
import math
import numpy as np
from tensorflow import io
import tensorflow._api.v2.compat.v1 as tf


def read_bytes(path):
    '''Read bytes for OpenSeg model running.'''

    with io.gfile.GFile(path, 'rb') as f:
        file_bytes = f.read()
    return file_bytes


def make_intrinsic(fx, fy, mx, my):
    '''Create camera intrinsics.'''

    intrinsic = np.eye(4)
    intrinsic[0][0] = fx
    intrinsic[1][1] = fy
    intrinsic[0][2] = mx
    intrinsic[1][2] = my
    return intrinsic

def adjust_intrinsic(intrinsic, intrinsic_image_dim, image_dim):
    '''Adjust camera intrinsics.'''

    if intrinsic_image_dim == image_dim:
        return intrinsic
    resize_width = int(math.floor(image_dim[1] * float(
                    intrinsic_image_dim[0]) / float(intrinsic_image_dim[1])))
    intrinsic[0, 0] *= float(resize_width) / float(intrinsic_image_dim[0])
    intrinsic[1, 1] *= float(image_dim[1]) / float(intrinsic_image_dim[1])
    # account for cropping here
    intrinsic[0, 2] *= float(image_dim[0] - 1) / float(intrinsic_image_dim[0] - 1)
    intrinsic[1, 2] *= float(image_dim[1] - 1) / float(intrinsic_image_dim[1] - 1)
    return intrinsic


def extract_openseg_img_feature(aug_img, np_image_string, openseg_model, text_emb, img_size=None, regional_pool=False):
    '''Extract per-pixel OpenSeg features.'''

    # run OpenSeg
    results = openseg_model.signatures['serving_default'](
            inp_image_bytes=tf.convert_to_tensor(np_image_string[0]),
            inp_text_emb=text_emb)
    img_info = results['image_info']
    crop_sz = [
        int(img_info[0, 0] * img_info[2, 0]),
        int(img_info[0, 1] * img_info[2, 1])
    ]
    if regional_pool:
        image_embedding_feat = results['ppixel_ave_feat'][:, :crop_sz[0], :crop_sz[1]]
    else:
        image_embedding_feat = results['image_embedding_feat'][:, :crop_sz[0], :crop_sz[1]]
    if img_size is not None:
        feat_2d = tf.cast(tf.image.resize_nearest_neighbor(
            image_embedding_feat, img_size, align_corners=True)[0], dtype=tf.float16).numpy()
    else:
        feat_2d = tf.cast(image_embedding_feat[[0]], dtype=tf.float16).numpy()

    feat_2d = torch.from_numpy(feat_2d).permute(2, 0, 1)

    return feat_2d

def save_fused_feature(feat_bank, point_ids, n_points, out_dir, scene_id, args):
    '''Save features.'''

    for n in range(args.num_rand_file_per_scene):
        if n_points < args.n_split_points:
            n_points_cur = n_points # to handle point cloud numbers less than n_split_points
        else:
            n_points_cur = args.n_split_points

        rand_ind = np.random.choice(range(n_points), n_points_cur, replace=False)

        mask_entire = torch.zeros(n_points, dtype=torch.bool)
        mask_entire[rand_ind] = True
        mask = torch.zeros(n_points, dtype=torch.bool)
        mask[point_ids] = True
        mask_entire = mask_entire & mask

        torch.save({"feat": feat_bank[mask_entire].half().cpu(),
                    "mask_full": mask_entire
        },  os.path.join(out_dir, scene_id +'_%d.pt'%(n)))
        print(os.path.join(out_dir, scene_id +'_%d.pt'%(n)) + ' is saved!')


class PointCloudToImageMapper(object):
    def __init__(self, image_dim,
            visibility_threshold=0.25, cut_bound=0, intrinsics=None):
        
        self.image_dim = image_dim
        self.vis_thres = visibility_threshold
        self.cut_bound = cut_bound
        self.intrinsics = intrinsics

    def compute_mapping(self, camera_to_world, coords, depth=None, intrinsic=None):
        """
        :param camera_to_world: 4 x 4
        :param coords: N x 3 format
        :param depth: H x W format
        :param intrinsic: 3x3 format
        :return: mapping, N x 3 format, (H,W,mask)
        """
        if self.intrinsics is not None: # global intrinsics
            intrinsic = self.intrinsics

        mapping = np.zeros((3, coords.shape[0]), dtype=int)
        coords_new = np.concatenate([coords, np.ones([coords.shape[0], 1])], axis=1).T
        assert coords_new.shape[0] == 4, "[!] Shape error"

        world_to_camera = np.linalg.inv(camera_to_world)
        p = np.matmul(world_to_camera, coords_new)
        p[0] = (p[0] * intrinsic[0][0]) / p[2] + intrinsic[0][2]
        p[1] = (p[1] * intrinsic[1][1]) / p[2] + intrinsic[1][2]
        pi = np.round(p).astype(int) # simply round the projected coordinates
        inside_mask = (pi[0] >= self.cut_bound) * (pi[1] >= self.cut_bound) \
                    * (pi[0] < self.image_dim[0]-self.cut_bound) \
                    * (pi[1] < self.image_dim[1]-self.cut_bound)
        if depth is not None:
            depth_cur = depth[pi[1][inside_mask], pi[0][inside_mask]]
            occlusion_mask = np.abs(depth[pi[1][inside_mask], pi[0][inside_mask]]
                                    - p[2][inside_mask]) <= \
                                    self.vis_thres * depth_cur

            inside_mask[inside_mask == True] = occlusion_mask
        else:
            front_mask = p[2]>0 # make sure the depth is in front
            inside_mask = front_mask*inside_mask
        mapping[0][inside_mask] = pi[1][inside_mask]
        mapping[1][inside_mask] = pi[0][inside_mask]
        mapping[2][inside_mask] = 1

        return mapping.T


def obtain_intr_extr_matterport(scene):
    '''Obtain the intrinsic and extrinsic parameters of Matterport3D.'''

    img_dir = os.path.join(scene, 'color')
    pose_dir = os.path.join(scene, 'pose')
    intr_dir = os.path.join(scene, 'intrinsic')
    img_names = sorted(glob.glob(img_dir+'/*.jpg'))

    intrinsics = []
    extrinsics = []
    for img_name in img_names:
        name = img_name.split('/')[-1][:-4]

        extrinsics.append(np.loadtxt(os.path.join(pose_dir, name+'.txt')))
        intrinsics.append(np.loadtxt(os.path.join(intr_dir, name+'.txt')))

    intrinsics = np.stack(intrinsics, axis=0)
    extrinsics = np.stack(extrinsics, axis=0)
    img_names = np.asarray(img_names)

    return img_names, intrinsics, extrinsics

def get_matterport_camera_data(data_path, locs_in, args):
    '''Get all camera view related infomation of Matterport3D.'''

    # find bounding box of the current region
    bbox_l = locs_in.min(axis=0)
    bbox_h = locs_in.max(axis=0)

    building_name = data_path.split('/')[-1].split('_')[0]
    scene_id = data_path.split('/')[-1].split('.')[0]

    scene = os.path.join(args.data_root_2d, building_name)
    img_names, intrinsics, extrinsics = obtain_intr_extr_matterport(scene)

    cam_loc = extrinsics[:, :3, -1]
    ind_in_scene = (cam_loc[:, 0] > bbox_l[0]) & (cam_loc[:, 0] < bbox_h[0]) & \
                    (cam_loc[:, 1] > bbox_l[1]) & (cam_loc[:, 1] < bbox_h[1]) & \
                    (cam_loc[:, 2] > bbox_l[2]) & (cam_loc[:, 2] < bbox_h[2])

    img_names_in = img_names[ind_in_scene]
    intrinsics_in = intrinsics[ind_in_scene]
    extrinsics_in = extrinsics[ind_in_scene]
    num_img = len(img_names_in)

    # some regions have no views inside, we consider it differently for test and train/val
    if args.split == 'test' and num_img == 0:
        print('no views inside {}, take the nearest 100 images to fuse'.format(scene_id))
        #! take the nearest 100 views for feature fusion of regions without inside views
        centroid = (bbox_l+bbox_h)/2
        dist_centroid = np.linalg.norm(cam_loc-centroid, axis=-1)
        ind_in_scene = np.argsort(dist_centroid)[:100]
        img_names_in = img_names[ind_in_scene]
        intrinsics_in = intrinsics[ind_in_scene]
        extrinsics_in = extrinsics[ind_in_scene]
        num_img = 100

    img_names_in = img_names_in.tolist()

    return intrinsics_in, extrinsics_in, img_names_in, scene_id, num_img