Spaces:
Running
Running
File size: 7,509 Bytes
684943d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import torch
import math
import numpy as np
from typing import NamedTuple
def ndc_2_cam(ndc_xyz, intrinsic, W, H):
inv_scale = torch.tensor([[W - 1, H - 1]], device=ndc_xyz.device)
cam_z = ndc_xyz[..., 2:3]
cam_xy = ndc_xyz[..., :2] * inv_scale * cam_z
cam_xyz = torch.cat([cam_xy, cam_z], dim=-1)
cam_xyz = cam_xyz @ torch.inverse(intrinsic[0, ...].t())
return cam_xyz
def depth2point_cam(sampled_depth, ref_intrinsic):
B, N, C, H, W = sampled_depth.shape
valid_z = sampled_depth
valid_x = torch.arange(W, dtype=torch.float32, device=sampled_depth.device) / (W - 1)
valid_y = torch.arange(H, dtype=torch.float32, device=sampled_depth.device) / (H - 1)
valid_x, valid_y = torch.meshgrid(valid_x, valid_y, indexing='xy')
# B,N,H,W
valid_x = valid_x[None, None, None, ...].expand(B, N, C, -1, -1)
valid_y = valid_y[None, None, None, ...].expand(B, N, C, -1, -1)
ndc_xyz = torch.stack([valid_x, valid_y, valid_z], dim=-1).view(B, N, C, H, W, 3) # 1, 1, 5, 512, 640, 3
cam_xyz = ndc_2_cam(ndc_xyz, ref_intrinsic, W, H) # 1, 1, 5, 512, 640, 3
return ndc_xyz, cam_xyz
def depth2point_world(depth_image, intrinsic_matrix, extrinsic_matrix):
# depth_image: (H, W), intrinsic_matrix: (3, 3), extrinsic_matrix: (4, 4)
_, xyz_cam = depth2point_cam(depth_image[None,None,None,...], intrinsic_matrix[None,...])
xyz_cam = xyz_cam.reshape(-1,3)
# xyz_world = torch.cat([xyz_cam, torch.ones_like(xyz_cam[...,0:1])], axis=-1) @ torch.inverse(extrinsic_matrix).transpose(0,1)
# xyz_world = xyz_world[...,:3]
return xyz_cam
def depth_pcd2normal(xyz, offset=None, gt_image=None):
hd, wd, _ = xyz.shape
if offset is not None:
ix, iy = torch.meshgrid(
torch.arange(wd), torch.arange(hd), indexing='xy')
xy = (torch.stack((ix, iy), dim=-1)[1:-1,1:-1]).to(xyz.device)
p_offset = torch.tensor([[0,1],[0,-1],[1,0],[-1,0]]).float().to(xyz.device)
new_offset = p_offset[None,None] + offset.reshape(hd, wd, 4, 2)[1:-1,1:-1]
xys = xy[:,:,None] + new_offset
xys[..., 0] = 2 * xys[..., 0] / (wd - 1) - 1.0
xys[..., 1] = 2 * xys[..., 1] / (hd - 1) - 1.0
sampled_xyzs = torch.nn.functional.grid_sample(xyz.permute(2,0,1)[None], xys.reshape(1, -1, 1, 2))
sampled_xyzs = sampled_xyzs.permute(0,2,3,1).reshape(hd-2,wd-2,4,3)
bottom_point = sampled_xyzs[:,:,0]
top_point = sampled_xyzs[:,:,1]
right_point = sampled_xyzs[:,:,2]
left_point = sampled_xyzs[:,:,3]
else:
bottom_point = xyz[..., 2:hd, 1:wd-1, :]
top_point = xyz[..., 0:hd-2, 1:wd-1, :]
right_point = xyz[..., 1:hd-1, 2:wd, :]
left_point = xyz[..., 1:hd-1, 0:wd-2, :]
left_to_right = right_point - left_point
bottom_to_top = top_point - bottom_point
xyz_normal = torch.cross(left_to_right, bottom_to_top, dim=-1)
xyz_normal = torch.nn.functional.normalize(xyz_normal, p=2, dim=-1)
xyz_normal = torch.nn.functional.pad(xyz_normal.permute(2,0,1), (1,1,1,1), mode='constant').permute(1,2,0)
return xyz_normal
def normal_from_depth_image(depth, intrinsic_matrix, extrinsic_matrix, offset=None, gt_image=None):
# depth: (H, W), intrinsic_matrix: (3, 3), extrinsic_matrix: (4, 4)
# xyz_normal: (H, W, 3)
xyz_world = depth2point_world(depth, intrinsic_matrix, extrinsic_matrix) # (HxW, 3)
xyz_world = xyz_world.reshape(*depth.shape, 3)
xyz_normal = depth_pcd2normal(xyz_world, offset, gt_image)
return xyz_normal
def normal_from_neareast(normal, offset):
_, hd, wd = normal.shape
left_top_point = normal[..., 0:hd-2, 0:wd-2]
top_point = normal[..., 0:hd-2, 1:wd-1]
right_top_point= normal[..., 0:hd-2, 2:wd]
left_point = normal[..., 1:hd-1, 0:wd-2]
right_point = normal[..., 1:hd-1, 2:wd]
left_bottom_point = normal[..., 2:hd, 0:wd-2]
bottom_point = normal[..., 2:hd, 1:wd-1]
right_bottom_point = normal[..., 2:hd, 2:wd]
normals = torch.stack((left_top_point,top_point,right_top_point,left_point,right_point,left_bottom_point,bottom_point,right_bottom_point),dim=0)
new_normal = (normals * offset[:,None,1:-1,1:-1]).sum(0)
new_normal = torch.nn.functional.normalize(new_normal, p=2, dim=0)
new_normal = torch.nn.functional.pad(new_normal, (1,1,1,1), mode='constant').permute(1,2,0)
return new_normal
class BasicPointCloud(NamedTuple):
points : np.array
colors : np.array
normals : np.array
def geom_transform_points(points, transf_matrix):
P, _ = points.shape
ones = torch.ones(P, 1, dtype=points.dtype, device=points.device)
points_hom = torch.cat([points, ones], dim=1)
points_out = torch.matmul(points_hom, transf_matrix.unsqueeze(0))
denom = points_out[..., 3:] + 0.0000001
return (points_out[..., :3] / denom).squeeze(dim=0)
def getWorld2View(R, t):
Rt = np.zeros((4, 4))
Rt[:3, :3] = R.transpose()
Rt[:3, 3] = t
Rt[3, 3] = 1.0
return np.float32(Rt)
def getWorld2View2(R, t, translate=np.array([.0, .0, .0]), scale=1.0):
Rt = np.zeros((4, 4))
Rt[:3, :3] = R.transpose()
Rt[:3, 3] = t
Rt[3, 3] = 1.0
C2W = np.linalg.inv(Rt)
cam_center = C2W[:3, 3]
cam_center = (cam_center + translate) * scale
C2W[:3, 3] = cam_center
Rt = np.linalg.inv(C2W)
return np.float32(Rt)
def getProjectionMatrix(znear, zfar, fovX, fovY):
tanHalfFovY = math.tan((fovY / 2))
tanHalfFovX = math.tan((fovX / 2))
top = tanHalfFovY * znear
bottom = -top
right = tanHalfFovX * znear
left = -right
P = torch.zeros(4, 4)
z_sign = 1.0
P[0, 0] = 2.0 * znear / (right - left)
P[1, 1] = 2.0 * znear / (top - bottom)
P[0, 2] = (right + left) / (right - left)
P[1, 2] = (top + bottom) / (top - bottom)
P[3, 2] = z_sign
P[2, 2] = z_sign * zfar / (zfar - znear)
P[2, 3] = -(zfar * znear) / (zfar - znear)
return P
def getProjectionMatrixCenterShift(znear, zfar, cx, cy, fl_x, fl_y, w, h):
top = cy / fl_y * znear
bottom = -(h - cy) / fl_y * znear
left = -(w - cx) / fl_x * znear
right = cx / fl_x * znear
P = torch.zeros(4, 4)
z_sign = 1.0
P[0, 0] = 2.0 * znear / (right - left)
P[1, 1] = 2.0 * znear / (top - bottom)
P[0, 2] = (right + left) / (right - left)
P[1, 2] = (top + bottom) / (top - bottom)
P[3, 2] = z_sign
P[2, 2] = z_sign * zfar / (zfar - znear)
P[2, 3] = -(zfar * znear) / (zfar - znear)
return P
def fov2focal(fov, pixels):
return pixels / (2 * math.tan(fov / 2))
def focal2fov(focal, pixels):
return 2*math.atan(pixels/(2*focal))
def patch_offsets(h_patch_size, device):
offsets = torch.arange(-h_patch_size, h_patch_size + 1, device=device)
return torch.stack(torch.meshgrid(offsets, offsets, indexing='xy')[::-1], dim=-1).view(1, -1, 2)
def patch_warp(H, uv):
B, P = uv.shape[:2]
H = H.view(B, 3, 3)
ones = torch.ones((B,P,1), device=uv.device)
homo_uv = torch.cat((uv, ones), dim=-1)
grid_tmp = torch.einsum("bik,bpk->bpi", H, homo_uv)
grid_tmp = grid_tmp.reshape(B, P, 3)
grid = grid_tmp[..., :2] / (grid_tmp[..., 2:] + 1e-10)
return grid
|