File size: 20,327 Bytes
684943d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
import collections
import math
import os
import re
import time
from pathlib import Path
from typing import List, NamedTuple, Tuple

import cv2
import numpy as np
import open3d as o3d
import PIL.Image
import roma
import scipy
import torch
import torchvision.transforms as tvf
import torchvision.transforms.functional as tf
from PIL.ImageOps import exif_transpose
from plyfile import PlyData, PlyElement
from tqdm import tqdm

from dust3r.utils.device import to_numpy
from dust3r.utils.image import _resize_pil_image
from field_construction.scene.colmap_loader import (qvec2rotmat,
                                                    read_extrinsics_binary,
                                                    rotmat2qvec,
                                                    write_cameras_binary,
                                                    write_cameras_text,
                                                    write_images_binary,
                                                    write_images_text)

try:
    from pillow_heif import register_heif_opener
    register_heif_opener()
    heif_support_enabled = True
except ImportError:
    heif_support_enabled = False

ImgNorm = tvf.Compose([
    tvf.ToTensor(), 
    tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])


def save_time(time_dir, process_name, sub_time):
    if isinstance(time_dir, str):
        time_dir = Path(time_dir)
    time_dir.mkdir(parents=True, exist_ok=True)
    minutes, seconds = divmod(sub_time, 60)
    formatted_time = f"{int(minutes)} min {int(seconds)} sec"  
    with open(time_dir / f'train_time.txt', 'a') as f:
        f.write(f'{process_name}: {formatted_time}\n')


def split_train_test(image_files, llffhold=8, n_views=None, verbose=True):
    test_idx  = np.linspace(1, len(image_files) - 2, num=12, dtype=int)
    train_idx = [i for i in range(len(image_files)) if i not in test_idx]

    sparse_idx = np.linspace(0, len(train_idx) - 1, num=n_views, dtype=int)
    train_idx = [train_idx[i] for i in sparse_idx]

    if verbose:
        print(">> Spliting Train-Test Set: ")
        # print(" - sparse_idx:         ", sparse_idx)
        print(" - train_set_indices:  ", train_idx)
        print(" - test_set_indices:   ", test_idx)
    train_img_files = [image_files[i] for i in train_idx]
    test_img_files = [image_files[i] for i in test_idx]

    return train_img_files, test_img_files


def get_sorted_image_files(image_dir: str) -> Tuple[List[str], List[str]]:
    """
    Get sorted image files from the given directory.

    Args:
        image_dir (str): Path to the directory containing images.

    Returns:
        Tuple[List[str], List[str]]: A tuple containing two lists:
            - List of sorted image file paths
            - List of corresponding file suffixes
    """
    allowed_extensions = {'.png', '.jpg', '.jpeg', '.bmp', '.tiff', '.JPG', '.PNG'}
    image_path = Path(image_dir)
    
    def extract_number(filename):
        match = re.search(r'\d+', filename.stem)
        return int(match.group()) if match else float('inf')
    
    image_files = [
        str(f) for f in image_path.iterdir()
        if f.is_file() and f.suffix.lower() in allowed_extensions
    ]
    
    sorted_files = sorted(image_files, key=lambda x: extract_number(Path(x)))
    suffixes = [Path(file).suffix for file in sorted_files]
    
    return sorted_files, suffixes[0]    


def rigid_points_registration(pts1, pts2, conf=None):
    R, T, s = roma.rigid_points_registration(
        pts1.reshape(-1, 3), pts2.reshape(-1, 3), weights=conf, compute_scaling=True)
    return s, R, T  # return un-scaled (R, T)


def init_filestructure(save_path, n_views=None):
    if n_views is not None and n_views != 0:        
        sparse_0_path = save_path / f'sparse_{n_views}/0'    
        sparse_1_path = save_path / f'sparse_{n_views}/1'       
        print(f'>> Doing {n_views} views reconstrution!')
    elif n_views is None or n_views == 0:
        sparse_0_path = save_path / 'sparse_0/0'    
        sparse_1_path = save_path / 'sparse_0/1'
        print(f'>> Doing full views reconstrution!')

    save_path.mkdir(exist_ok=True, parents=True)
    sparse_0_path.mkdir(exist_ok=True, parents=True)    
    sparse_1_path.mkdir(exist_ok=True, parents=True)
    return save_path, sparse_0_path, sparse_1_path


def load_images(folder_or_list, size=512, square_ok=False, verbose=True):
    """ open and convert all images in a list or folder to proper input format for DUSt3R
    """
    if isinstance(folder_or_list, str):
        if verbose:
            print(f'>> Loading images from {folder_or_list}')
        root, folder_content = folder_or_list, sorted(os.listdir(folder_or_list))

    elif isinstance(folder_or_list, list):
        if verbose:
            print(f'>> Loading a list of {len(folder_or_list)} images')
        root, folder_content = '', folder_or_list

    else:
        raise ValueError(f'bad {folder_or_list=} ({type(folder_or_list)})')

    supported_images_extensions = ['.jpg', '.jpeg', '.png', '.JPG', 'PNG']
    if heif_support_enabled:
        supported_images_extensions += ['.heic', '.heif']
    supported_images_extensions = tuple(supported_images_extensions)

    imgs = []
    for path in folder_content:
        if not path.lower().endswith(supported_images_extensions):
            continue
        img = exif_transpose(PIL.Image.open(os.path.join(root, path))).convert('RGB')
        W1, H1 = img.size
        if size == 224:
            # resize short side to 224 (then crop)
            img = _resize_pil_image(img, round(size * max(W1/H1, H1/W1)))
        else:
            # resize long side to 512
            img = _resize_pil_image(img, size)
        W, H = img.size
        cx, cy = W//2, H//2
        if size == 224:
            half = min(cx, cy)
            img = img.crop((cx-half, cy-half, cx+half, cy+half))
        else:
            halfw, halfh = ((2*cx)//16)*8, ((2*cy)//16)*8
            if not (square_ok) and W == H:
                halfh = 3*halfw/4
            img = img.crop((cx-halfw, cy-halfh, cx+halfw, cy+halfh))

        W2, H2 = img.size
        if verbose:
            print(f' - adding {path} with resolution {W1}x{H1} --> {W2}x{H2}')
        imgs.append(dict(img=ImgNorm(img)[None], true_shape=np.int32(
            [img.size[::-1]]), idx=len(imgs), instance=str(len(imgs))))

    assert imgs, 'no images foud at '+root
    if verbose:
        print(f' (Found {len(imgs)} images)')
    return imgs, (W1,H1)


import collections

CameraModel = collections.namedtuple("CameraModel", ["model_id", "model_name", "num_params"])
Camera = collections.namedtuple("Camera", ["id", "model", "width", "height", "params"])
BaseImage = collections.namedtuple("Image", ["id", "qvec", "tvec", "camera_id", "name", "xys", "point3D_ids"])
Point3D = collections.namedtuple("Point3D", ["id", "xyz", "rgb", "error", "image_ids", "point2D_idxs"])
CAMERA_MODELS = {
    CameraModel(model_id=0, model_name="SIMPLE_PINHOLE", num_params=3),
    CameraModel(model_id=1, model_name="PINHOLE", num_params=4),
    CameraModel(model_id=2, model_name="SIMPLE_RADIAL", num_params=4),
    CameraModel(model_id=3, model_name="RADIAL", num_params=5),
    CameraModel(model_id=4, model_name="OPENCV", num_params=8),
    CameraModel(model_id=5, model_name="OPENCV_FISHEYE", num_params=8),
    CameraModel(model_id=6, model_name="FULL_OPENCV", num_params=12),
    CameraModel(model_id=7, model_name="FOV", num_params=5),
    CameraModel(model_id=8, model_name="SIMPLE_RADIAL_FISHEYE", num_params=4),
    CameraModel(model_id=9, model_name="RADIAL_FISHEYE", num_params=5),
    CameraModel(model_id=10, model_name="THIN_PRISM_FISHEYE", num_params=12)
}
CAMERA_MODEL_IDS = dict([(camera_model.model_id, camera_model)
                         for camera_model in CAMERA_MODELS])
CAMERA_MODEL_NAMES = dict([(camera_model.model_name, camera_model)
                           for camera_model in CAMERA_MODELS])
      
def save_extrinsic(sparse_path, extrinsics_w2c, img_files, image_suffix):
    images_bin_file = sparse_path / 'images.bin'
    images_txt_file = sparse_path / 'images.txt'
    images = {}
    
    for i, (w2c, img_file) in enumerate(zip(extrinsics_w2c, img_files), start=1):  # Start enumeration from 1
        name = Path(img_file).stem + image_suffix
        rotation_matrix = w2c[:3, :3]
        qvec = rotmat2qvec(rotation_matrix)
        tvec = w2c[:3, 3]
        
        images[i] = BaseImage(
            id=i,
            qvec=qvec,
            tvec=tvec,
            camera_id=i,
            name=name,
            xys=[],  # Empty list as we don't have 2D point information
            point3D_ids=[]  # Empty list as we don't have 3D point IDs
        )
    
    write_images_binary(images, images_bin_file)
    write_images_text(images, images_txt_file)


def save_intrinsics(sparse_path, focals, org_imgs_shape, imgs_shape, save_focals=False):
    org_width, org_height = org_imgs_shape
    scale_factor_x = org_width / imgs_shape[2]
    scale_factor_y = org_height / imgs_shape[1]
    cameras_bin_file = sparse_path / 'cameras.bin'
    cameras_txt_file = sparse_path / 'cameras.txt'

    cameras = {}
    for i, focal in enumerate(focals, start=1):  # Start enumeration from 1
        cameras[i] = Camera(
            id=i,
            model="PINHOLE",
            width=org_width,
            height=org_height,
            params=[focal*scale_factor_x, focal*scale_factor_y, org_width/2, org_height/2]
        )    
    print(f' - scaling focal: ({focal}, {focal}) --> ({focal*scale_factor_x}, {focal*scale_factor_y})' )
    write_cameras_binary(cameras, cameras_bin_file)
    write_cameras_text(cameras, cameras_txt_file)
    if save_focals:
        np.save(sparse_path / 'non_scaled_focals.npy', focals)


def save_points3D(sparse_path, imgs, pts3d, confs, masks=None, use_masks=True, save_all_pts=False, save_txt_path=None, depth_threshold=0.1, max_pts_num=150 * 10**10):
    
    points3D_bin_file = sparse_path / 'points3D.bin'
    points3D_txt_file = sparse_path / 'points3D.txt'
    points3D_ply_file = sparse_path / 'points3D.ply'

    # Convert inputs to numpy arrays
    imgs = to_numpy(imgs)
    pts3d = to_numpy(pts3d)
    confs = to_numpy(confs)
    if confs is not None:
        np.save(sparse_path / 'confidence.npy', confs)

    # Process points and colors
    if use_masks:
        masks = to_numpy(masks)
        pts = np.concatenate([p[m] for p, m in zip(pts3d, masks)])
        # pts = np.concatenate([p[m] for p, m in zip(pts3d, masks.reshape(masks.shape[0], -1))])
        col = np.concatenate([p[m] for p, m in zip(imgs, masks)])
        confs = np.concatenate([p[m] for p, m in zip(confs, masks.reshape(masks.shape[0], -1))])
    else:
        pts = np.array(pts3d)
        col = np.array(imgs)
        confs = np.array(confs)

    pts = pts.reshape(-1, 3)
    col = col.reshape(-1, 3) * 255.
    confs = confs.reshape(-1, 1)

    co_mask_dsp_pts_num = pts.shape[0]
    if pts.shape[0] > max_pts_num:
        print(f'Downsampling points from {pts.shape[0]} to {max_pts_num}')
        # Normalize confidences to range (0, 1)
        confs_min = np.min(confs)
        confs_max = np.max(confs)
        confs = (confs - confs_min) / (confs_max - confs_min)
        confs = confs + 1
        weights = confs.reshape(-1) / np.sum(confs)        
        indices = np.random.choice(pts.shape[0], max_pts_num, replace=False, p=weights)
        pts = pts[indices]
        col = col[indices]
        confs = confs[indices]
        conf_dsp_pts_num = pts.shape[0]
    if confs is not None:
        np.save(sparse_path / 'confidence_dsp.npy', confs)

    storePly(points3D_ply_file, pts, col)
    if save_all_pts:
        np.save(sparse_path / 'points3D_all.npy', pts3d)
        np.save(sparse_path / 'pointsColor_all.npy', imgs)
    
    # Write pts_num.txt
    if isinstance(save_txt_path, str):
        save_txt_path = Path(save_txt_path)
    pts_num_file = save_txt_path / f'pts_num.txt'  # New file for pts_num
    with open(pts_num_file, 'a') as f:
        f.write(f"Depth threshold: {depth_threshold}\n")
        f.write(f"Vanilla points num: {pts3d.reshape(-1, 3).shape[0]}\n")
        f.write(f"Co_Mask DSP points num: {co_mask_dsp_pts_num}\n")
        f.write(f"Co_Mask DSP ratio: {co_mask_dsp_pts_num / pts3d.reshape(-1, 3).shape[0]}\n")
        if co_mask_dsp_pts_num > max_pts_num:
            f.write(f"Conf_Mask DSP points num: {conf_dsp_pts_num}\n")
            f.write(f"Conf_Mask DSP ratio: {conf_dsp_pts_num / pts3d.reshape(-1, 3).shape[0]}\n")
        f.write("\n")
    
    return pts.shape[0]


# Save images and masks
def save_images_and_masks(sparse_0_path, n_views, imgs, overlapping_masks, image_files, image_suffix):

    images_path = sparse_0_path / f'imgs_{n_views}'
    overlapping_masks_path = sparse_0_path / f'overlapping_masks_{n_views}'

    images_path.mkdir(exist_ok=True, parents=True)
    overlapping_masks_path.mkdir(exist_ok=True, parents=True)

    for i, (image, name, overlapping_mask) in enumerate(zip(imgs, image_files, overlapping_masks)):
        imgname = Path(name).stem
        image_save_path = images_path / f"{imgname}{image_suffix}"
        overlapping_mask_save_path = overlapping_masks_path / f"{imgname}{image_suffix}"
        overlapping_mask_save_path = overlapping_masks_path / f"{imgname}{image_suffix}"

        # Save overlapping masks
        overlapping_mask = np.repeat(np.expand_dims(overlapping_mask, -1), 3, axis=2) * 255
        PIL.Image.fromarray(overlapping_mask.astype(np.uint8)).save(overlapping_mask_save_path)

        # Save images   
        rgb_image = cv2.cvtColor(image * 255, cv2.COLOR_BGR2RGB)
        cv2.imwrite(str(image_save_path), rgb_image)


def cal_co_vis_mask(points, depths, curr_depth_map, depth_threshold, camera_intrinsics, extrinsics_w2c):

    h, w = curr_depth_map.shape
    overlapping_mask = np.zeros((h, w), dtype=bool)
    # Project 3D points to image j
    points_2d, _ = project_points(points, camera_intrinsics, extrinsics_w2c)
    
    # Check if points are within image bounds
    valid_points = (points_2d[:, 0] >= 0) & (points_2d[:, 0] < w) & \
                   (points_2d[:, 1] >= 0) & (points_2d[:, 1] < h)
        
    # Check depth consistency using vectorized operations
    valid_points_2d = points_2d[valid_points].astype(int)
    valid_depths = depths[valid_points]

    # Extract x and y coordinates
    x_coords, y_coords = valid_points_2d[:, 0], valid_points_2d[:, 1]

    # Compute depth differences
    depth_differences = np.abs(valid_depths - curr_depth_map[y_coords, x_coords])

    # Create a mask for points where the depth difference is below the threshold
    consistent_depth_mask = depth_differences < depth_threshold

    # Update the overlapping masks using the consistent depth mask
    overlapping_mask[y_coords[consistent_depth_mask], x_coords[consistent_depth_mask]] = True

    return overlapping_mask

def normalize_depth(depth_map):
    """Normalize the depth map to a range between 0 and 1."""
    return (depth_map - np.min(depth_map)) / (np.max(depth_map) - np.min(depth_map))

def compute_co_vis_masks(sorted_conf_indices, depthmaps, pointmaps, camera_intrinsics, extrinsics_w2c, image_sizes, depth_threshold=0.1):

    num_images, h, w, _ = image_sizes
    pointmaps = pointmaps.reshape(num_images, h, w, 3)
    overlapping_masks = np.zeros((num_images, h, w), dtype=bool)
    
    for i, curr_map_idx in tqdm(enumerate(sorted_conf_indices), total=len(sorted_conf_indices)):

        # if frame_idx is 0, set its occ_mask to be all False
        if i == 0:
            continue

        # get before and after curr_frame's indices
        idx_before = sorted_conf_indices[:i]
        
        # idx_after = sorted_conf_indices[i+1:]

        # get partial pointmaps and depthmaps
        points_before = pointmaps[idx_before].reshape(-1, 3)
        depths_before = depthmaps[idx_before].reshape(-1)    
        # points_after = pointmaps[idx_after].reshape(-1, 3)        
        # depths_after = depthmaps[idx_after].reshape(-1)
        # get current frame's depth map
        curr_depth_map = depthmaps[curr_map_idx].reshape(h, w)

        # normalize depth for comparison
        depths_before = normalize_depth(depths_before)
        # depths_after = normalize_depth(depths_after)
        curr_depth_map = normalize_depth(curr_depth_map)

        # before_mask = overlapping_masks[idx_before]
        # after_mask = overlapping_masks[idx_after]
        # curr_mask = before_mask & after_mask

        before_mask = cal_co_vis_mask(points_before, depths_before, curr_depth_map, depth_threshold, camera_intrinsics[curr_map_idx], extrinsics_w2c[curr_map_idx])
        # after_mask = cal_co_vis_mask(points_after, depths_after, camera_intrinsics[i], extrinsics_w2c[i], curr_depth_map, depth_threshold)
        
        # white/True means co-visible redundant area: we need to remove
        overlapping_masks[curr_map_idx] = before_mask# & after_mask
        
    return overlapping_masks


def project_points(points_3d, intrinsics, extrinsics):
    # Convert to homogeneous coordinates
    points_3d_homogeneous = np.hstack((points_3d, np.ones((points_3d.shape[0], 1))))
    
    # Apply extrinsic matrix
    points_camera = np.dot(extrinsics, points_3d_homogeneous.T).T
    
    # Apply intrinsic matrix
    points_2d_homogeneous = np.dot(intrinsics, points_camera[:, :3].T).T
    
    # Convert to 2D coordinates
    points_2d = points_2d_homogeneous[:, :2] / points_2d_homogeneous[:, 2:]
    depths = points_camera[:, 2]
    
    return points_2d, depths

def read_colmap_gt_pose(gt_pose_path, llffhold=8):
    colmap_cam_extrinsics = read_extrinsics_binary(gt_pose_path + '/sparse/0/images.bin')
    colmap_cam_extrinsics = {k: v for k, v in sorted(colmap_cam_extrinsics.items(), key=lambda item: item[1].name)}
    all_pose=[]
    for idx, key in enumerate(colmap_cam_extrinsics):
        extr = colmap_cam_extrinsics[key]
        # print(idx, extr.name)
        R = np.transpose(qvec2rotmat(extr.qvec))
        # R = np.array(qvec2rotmat(extr.qvec))
        T = np.array(extr.tvec)
        pose = np.eye(4,4)
        pose[:3, :3] = R
        pose[:3, 3] = T
        all_pose.append(pose)
    colmap_pose = np.array(all_pose)
    return colmap_pose


def readImages(renders_dir, gt_dir):
    renders = []
    gts = []
    image_names = []
    for fname in os.listdir(renders_dir):
        render = PIL.Image.open(renders_dir / fname)
        gt = PIL.Image.open(gt_dir / fname)
        renders.append(tf.to_tensor(render).unsqueeze(0)[:, :3, :, :].cuda())
        gts.append(tf.to_tensor(gt).unsqueeze(0)[:, :3, :, :].cuda())
        image_names.append(fname)
    return renders, gts, image_names

def align_pose(pose1, pose2):
    mtx1 = np.array(pose1, dtype=np.double, copy=True)
    mtx2 = np.array(pose2, dtype=np.double, copy=True)

    if mtx1.ndim != 2 or mtx2.ndim != 2:
        raise ValueError("Input matrices must be two-dimensional")
    if mtx1.shape != mtx2.shape:
        raise ValueError("Input matrices must be of same shape")
    if mtx1.size == 0:
        raise ValueError("Input matrices must be >0 rows and >0 cols")

    # translate all the data to the origin
    mtx1 -= np.mean(mtx1, 0)
    mtx2 -= np.mean(mtx2, 0)

    norm1 = np.linalg.norm(mtx1)
    norm2 = np.linalg.norm(mtx2)

    if norm1 == 0 or norm2 == 0:
        raise ValueError("Input matrices must contain >1 unique points")

    # change scaling of data (in rows) such that trace(mtx*mtx') = 1
    mtx1 /= norm1
    mtx2 /= norm2

    # transform mtx2 to minimize disparity
    R, s = scipy.linalg.orthogonal_procrustes(mtx1, mtx2)
    mtx2 = mtx2 * s

    return mtx1, mtx2, R

def storePly(path, xyz, rgb):
    # Define the dtype for the structured array
    dtype = [('x', 'f4'), ('y', 'f4'), ('z', 'f4'),
            ('nx', 'f4'), ('ny', 'f4'), ('nz', 'f4'),
            ('red', 'u1'), ('green', 'u1'), ('blue', 'u1')]

    normals = np.zeros_like(xyz)

    elements = np.empty(xyz.shape[0], dtype=dtype)
    attributes = np.concatenate((xyz, normals, rgb), axis=1)
    elements[:] = list(map(tuple, attributes))

    # Create the PlyData object and write to file
    vertex_element = PlyElement.describe(elements, 'vertex')
    ply_data = PlyData([vertex_element])
    ply_data.write(path)