LangScene-X / field_construction /scene /dataset_readers.py
seawolf2357's picture
Upload folder using huggingface_hub
684943d verified
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import json
import os
import sys
from pathlib import Path
from typing import NamedTuple
import numpy as np
import open3d as o3d
from PIL import Image
from plyfile import PlyData, PlyElement
from scipy.spatial.transform import Rotation as R
from field_construction.scene.colmap_loader import (Camera, Image, qvec2rotmat,
read_extrinsics_binary,
read_extrinsics_text,
read_intrinsics_binary,
read_intrinsics_text,
read_points3D_binary,
read_points3D_text)
from field_construction.scene.gaussian_model import BasicPointCloud
from field_construction.utils.graphics_utils import (focal2fov, fov2focal,
getWorld2View2)
from field_construction.utils.sh_utils import SH2RGB
class CameraInfo(NamedTuple):
uid: int
global_id: int
R: np.array
T: np.array
FovY: np.array
FovX: np.array
image_path: str
image_name: str
width: int
height: int
fx: float
fy: float
class SceneInfo(NamedTuple):
point_cloud: BasicPointCloud
train_cameras: list
test_cameras: list
nerf_normalization: dict
ply_path: str
def getNerfppNorm(cam_info):
def get_center_and_diag(cam_centers):
cam_centers = np.hstack(cam_centers)
avg_cam_center = np.mean(cam_centers, axis=1, keepdims=True)
center = avg_cam_center
dist = np.linalg.norm(cam_centers - center, axis=0, keepdims=True)
diagonal = np.max(dist)
return center.flatten(), diagonal
cam_centers = []
for cam in cam_info:
W2C = getWorld2View2(cam.R, cam.T)
C2W = np.linalg.inv(W2C)
cam_centers.append(C2W[:3, 3:4])
center, diagonal = get_center_and_diag(cam_centers)
radius = diagonal * 1.1
translate = -center
return {"translate": translate, "radius": radius}
def load_poses(pose_path, num):
poses = []
with open(pose_path, "r") as f:
lines = f.readlines()
for i in range(num):
line = lines[i]
c2w = np.array(list(map(float, line.split()))).reshape(4, 4)
c2w[:3,3] = c2w[:3,3] * 10.0
w2c = np.linalg.inv(c2w)
w2c = w2c
poses.append(w2c)
poses = np.stack(poses, axis=0)
return poses
def readColmapCameras(cam_extrinsics, cam_intrinsics, images_folder):
cam_infos = []
for idx, key in enumerate(cam_extrinsics):
sys.stdout.write('\r')
# the exact output you're looking for:
sys.stdout.write("Reading camera {}/{}".format(idx+1, len(cam_extrinsics)))
sys.stdout.flush()
extr = cam_extrinsics[key]
intr = cam_intrinsics[extr.camera_id]
height = intr.height
width = intr.width
uid = intr.id
R = np.transpose(qvec2rotmat(extr.qvec))
T = np.array(extr.tvec)
if intr.model=="SIMPLE_PINHOLE":
focal_length_x = intr.params[0]
FovY = focal2fov(focal_length_x, height)
FovX = focal2fov(focal_length_x, width)
elif intr.model=="PINHOLE":
focal_length_x = intr.params[0]
focal_length_y = intr.params[1]
FovY = focal2fov(focal_length_y, height)
FovX = focal2fov(focal_length_x, width)
else:
assert False, "Colmap camera model not handled: only undistorted datasets (PINHOLE or SIMPLE_PINHOLE cameras) supported!"
image_path = os.path.join(images_folder, os.path.basename(extr.name))
image_name = os.path.basename(image_path).split(".")[0]
cam_info = CameraInfo(uid=uid, global_id=idx, R=R, T=T, FovY=FovY, FovX=FovX,
image_path=image_path, image_name=image_name,
width=width, height=height, fx=focal_length_x, fy=focal_length_y)
cam_infos.append(cam_info)
sys.stdout.write('\n')
return cam_infos
def fetchPly_o3d(path):
pcd = o3d.io.read_point_cloud(path)
positions = np.asarray(pcd.points)
colors = np.asarray(pcd.colors)
normals = np.zeros_like(positions)
return BasicPointCloud(points=positions, colors=colors, normals=normals)
def fetchPly(path):
plydata = PlyData.read(path)
vertices = plydata['vertex']
positions = np.vstack([vertices['x'], vertices['y'], vertices['z']]).T
colors = np.vstack([vertices['red'], vertices['green'], vertices['blue']]).T / 255.0
normals = np.vstack([vertices['nx'], vertices['ny'], vertices['nz']]).T
return BasicPointCloud(points=positions, colors=colors, normals=normals)
def storePly(path, xyz, rgb):
# Define the dtype for the structured array
dtype = [('x', 'f4'), ('y', 'f4'), ('z', 'f4'),
('nx', 'f4'), ('ny', 'f4'), ('nz', 'f4'),
('red', 'u1'), ('green', 'u1'), ('blue', 'u1')]
normals = np.zeros_like(xyz)
elements = np.empty(xyz.shape[0], dtype=dtype)
attributes = np.concatenate((xyz, normals, rgb), axis=1)
elements[:] = list(map(tuple, attributes))
# Create the PlyData object and write to file
vertex_element = PlyElement.describe(elements, 'vertex')
ply_data = PlyData([vertex_element])
ply_data.write(path)
def readColmapSceneInfo(path, images, eval, llffhold=10, loaded_iter=None):
try:
cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.txt")
cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.txt")
cam_extrinsics = read_extrinsics_text(cameras_extrinsic_file)
cam_intrinsics = read_intrinsics_text(cameras_intrinsic_file)
except:
cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.bin")
cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.bin")
cam_extrinsics = read_extrinsics_binary(cameras_extrinsic_file)
cam_intrinsics = read_intrinsics_binary(cameras_intrinsic_file)
reading_dir = "input" if images == None else images
cam_infos_unsorted = readColmapCameras(cam_extrinsics=cam_extrinsics, cam_intrinsics=cam_intrinsics, images_folder=os.path.join(path, reading_dir))
# cam_infos = sorted(cam_infos_unsorted.copy(), key = lambda x : int(x.image_name.split('_')[-1]))
cam_infos = sorted(cam_infos_unsorted.copy(), key = lambda x : x.image_name)
js_file = f"{path}/split.json"
train_list = None
test_list = None
if os.path.exists(js_file):
with open(js_file) as file:
meta = json.load(file)
train_list = meta["train"]
test_list = meta["test"]
print(f"train_list {len(train_list)}, test_list {len(test_list)}")
if train_list is not None:
train_cam_infos = [c for idx, c in enumerate(cam_infos) if c.image_name in train_list]
test_cam_infos = [c for idx, c in enumerate(cam_infos) if c.image_name in test_list]
print(f"train_cam_infos {len(train_cam_infos)}, test_cam_infos {len(test_cam_infos)}")
elif eval:
train_cam_infos = [c for idx, c in enumerate(cam_infos) if idx % llffhold != 0]
test_cam_infos = [c for idx, c in enumerate(cam_infos) if idx % llffhold == 0]
print("train_cam_infos: ", len(train_cam_infos))
print("test_cam_infos: ", len(test_cam_infos))
else:
train_cam_infos = cam_infos
test_cam_infos = []
print("only train_cam_infos: ", len(train_cam_infos))
nerf_normalization = getNerfppNorm(train_cam_infos)
ply_path = os.path.join(path, "sparse/0/points3D.ply")
bin_path = os.path.join(path, "sparse/0/points3D.bin")
txt_path = os.path.join(path, "sparse/0/points3D.txt")
if not loaded_iter:
if not os.path.exists(ply_path):
print("Converting point3d.bin to .ply, will happen only the first time you open the scene.")
try:
xyz, rgb, _ = read_points3D_binary(bin_path)
print(f"xyz {xyz.shape}")
except:
xyz, rgb, _ = read_points3D_text(txt_path)
storePly(ply_path, xyz, rgb)
try:
pcd = fetchPly(ply_path)
except:
pcd = None
else:
pcd = None
scene_info = SceneInfo(point_cloud=pcd,
train_cameras=train_cam_infos,
test_cameras=test_cam_infos,
nerf_normalization=nerf_normalization,
ply_path=ply_path)
return scene_info
def read_camera_npz(camera_dir):
images = {}
cameras = {}
for file_name in sorted(os.listdir(camera_dir)):
if not file_name.endswith(".npz"):
continue
file_path = os.path.join(camera_dir, file_name)
data = np.load(file_path)
pose = data["pose"]
intrinsics = data["intrinsics"]
R_c2w = pose[:3, :3]
t_c2w = pose[:3, 3]
R_w2c = R_c2w.T
t_w2c = - R_w2c @ t_c2w
rotation = R.from_matrix(R_w2c)
quat = rotation.as_quat()
qvec = np.array([quat[3], quat[0], quat[1], quat[2]])
tvec = t_w2c
fx = intrinsics[0, 0]
fy = intrinsics[1, 1]
cx = intrinsics[0, 2]
cy = intrinsics[1, 2]
model_name = 'PINHOLE'
params = np.array([fx, fy, cx, cy], dtype=np.float64)
width = int(cx * 2)
height = int(cy * 2)
try:
image_id = int(os.path.splitext(file_name)[0])
except:
image_id = int(os.path.splitext(file_name.split("_")[1])[0])
camera_id = image_id
cameras[camera_id] = Camera(
id=camera_id,
model=model_name,
width=width,
height=height,
params=params
)
image_name = os.path.splitext(file_name)[0] + ".png"
images[image_id] = Image(
id=image_id,
qvec=qvec,
tvec=tvec,
camera_id=camera_id,
name=image_name,
xys=np.zeros((0, 2)),
point3D_ids=np.zeros(0, dtype=int)
)
return images, cameras
def readCUT3RInfo(path, images, eval, llffhold=10, loaded_iter=None):
cameras_file = os.path.join(path, "camera")
extrinsics, intrinsics = read_camera_npz(cameras_file)
reading_dir = "input"
cam_infos_unsorted = readColmapCameras(cam_extrinsics=extrinsics, cam_intrinsics=intrinsics, images_folder=os.path.join(path, reading_dir))
# cam_infos = sorted(cam_infos_unsorted.copy(), key = lambda x : int(x.image_name.split('_')[-1]))
cam_infos = sorted(cam_infos_unsorted.copy(), key = lambda x : x.image_name)
js_file = f"{path}/split.json"
train_list = None
test_list = None
if os.path.exists(js_file):
with open(js_file) as file:
meta = json.load(file)
train_list = meta["train"]
test_list = meta["test"]
print(f"train_list {len(train_list)}, test_list {len(test_list)}")
if train_list is not None:
train_cam_infos = [c for idx, c in enumerate(cam_infos) if c.image_name in train_list]
test_cam_infos = [c for idx, c in enumerate(cam_infos) if c.image_name in test_list]
print(f"train_cam_infos {len(train_cam_infos)}, test_cam_infos {len(test_cam_infos)}")
elif eval:
train_cam_infos = [c for idx, c in enumerate(cam_infos) if idx % llffhold != 0]
test_cam_infos = [c for idx, c in enumerate(cam_infos) if idx % llffhold == 0]
print("train_cam_infos: ", len(train_cam_infos))
print("test_cam_infos: ", len(test_cam_infos))
else:
train_cam_infos = cam_infos
test_cam_infos = []
print("only train_cam_infos: ", len(train_cam_infos))
nerf_normalization = getNerfppNorm(train_cam_infos)
ply_path = os.path.join(path, "points3D.ply")
bin_path = os.path.join(path, "points3D.bin")
txt_path = os.path.join(path, "points3D.txt")
if not loaded_iter:
if not os.path.exists(ply_path):
print("Converting point3d.bin to .ply, will happen only the first time you open the scene.")
try:
xyz, rgb, _ = read_points3D_binary(bin_path)
print(f"xyz {xyz.shape}")
except:
xyz, rgb, _ = read_points3D_text(txt_path)
storePly(ply_path, xyz, rgb)
try:
pcd = fetchPly_o3d(ply_path)
except:
pcd = None
else:
pcd = None
scene_info = SceneInfo(point_cloud=pcd,
train_cameras=train_cam_infos,
test_cameras=test_cam_infos,
nerf_normalization=nerf_normalization,
ply_path=ply_path)
return scene_info
def readCamerasFromTransforms(path, transformsfile, white_background, extension=".png"):
cam_infos = []
with open(os.path.join(path, transformsfile)) as json_file:
contents = json.load(json_file)
fovx = contents["camera_angle_x"]
frames = contents["frames"]
for idx, frame in enumerate(frames):
cam_name = os.path.join(path, frame["file_path"] + extension)
# NeRF 'transform_matrix' is a camera-to-world transform
c2w = np.array(frame["transform_matrix"])
# change from OpenGL/Blender camera axes (Y up, Z back) to COLMAP (Y down, Z forward)
c2w[:3, 1:3] *= -1
# get the world-to-camera transform and set R, T
w2c = np.linalg.inv(c2w)
R = np.transpose(w2c[:3,:3]) # R is stored transposed due to 'glm' in CUDA code
T = w2c[:3, 3]
image_path = os.path.join(path, cam_name)
image_name = Path(cam_name).stem
image = Image.open(image_path)
im_data = np.array(image.convert("RGBA"))
bg = np.array([1,1,1]) if white_background else np.array([0, 0, 0])
norm_data = im_data / 255.0
arr = norm_data[:,:,:3] * norm_data[:, :, 3:4] + bg * (1 - norm_data[:, :, 3:4])
image = Image.fromarray(np.array(arr*255.0, dtype=np.byte), "RGB")
fovy = focal2fov(fov2focal(fovx, image.size[0]), image.size[1])
FovY = fovy
FovX = fovx
cam_infos.append(CameraInfo(uid=idx, global_id=idx, R=R, T=T, FovY=FovY, FovX=FovX, image=image,
image_path=image_path, image_name=image_name, width=image.size[0], height=image.size[1]))
return cam_infos
def readNerfSyntheticInfo(path, white_background, eval, extension=".png"):
print("Reading Training Transforms")
train_cam_infos = readCamerasFromTransforms(path, "transforms_train.json", white_background, extension)
print("Reading Test Transforms")
test_cam_infos = readCamerasFromTransforms(path, "transforms_test.json", white_background, extension)
if not eval:
train_cam_infos.extend(test_cam_infos)
test_cam_infos = []
nerf_normalization = getNerfppNorm(train_cam_infos)
ply_path = os.path.join(path, "points3d.ply")
if not os.path.exists(ply_path):
# Since this data set has no colmap data, we start with random points
num_pts = 100_000
print(f"Generating random point cloud ({num_pts})...")
# We create random points inside the bounds of the synthetic Blender scenes
xyz = np.random.random((num_pts, 3)) * 2.6 - 1.3
shs = np.random.random((num_pts, 3)) / 255.0
pcd = BasicPointCloud(points=xyz, colors=SH2RGB(shs), normals=np.zeros((num_pts, 3)))
storePly(ply_path, xyz, SH2RGB(shs) * 255)
try:
pcd = fetchPly(ply_path)
except:
pcd = None
scene_info = SceneInfo(point_cloud=pcd,
train_cameras=train_cam_infos,
test_cameras=test_cam_infos,
nerf_normalization=nerf_normalization,
ply_path=ply_path)
return scene_info
sceneLoadTypeCallbacks = {
"Colmap": readColmapSceneInfo,
"Blender" : readNerfSyntheticInfo,
"CUT3R": readCUT3RInfo
}