Spaces:
Running
Running
# | |
# Copyright (C) 2023, Inria | |
# GRAPHDECO research group, https://team.inria.fr/graphdeco | |
# All rights reserved. | |
# | |
# This software is free for non-commercial, research and evaluation use | |
# under the terms of the LICENSE.md file. | |
# | |
# For inquiries contact [email protected] | |
# | |
import os | |
import numpy as np | |
import torch | |
from plyfile import PlyData, PlyElement | |
from pytorch3d.transforms import quaternion_to_matrix | |
from simple_knn._C import distCUDA2 | |
from torch import nn | |
from field_construction.scene.per_point_adam import PerPointAdam | |
from field_construction.utils.general_utils import (build_rotation, | |
build_scaling, | |
build_scaling_rotation, | |
get_expon_lr_func, | |
inverse_sigmoid, | |
strip_symmetric) | |
from field_construction.utils.graphics_utils import BasicPointCloud | |
from field_construction.utils.pose_utils import get_tensor_from_camera | |
from field_construction.utils.sh_utils import RGB2SH | |
from field_construction.utils.system_utils import mkdir_p | |
def dilate(bin_img, ksize=5): | |
pad = (ksize - 1) // 2 | |
bin_img = torch.nn.functional.pad(bin_img, pad=[pad, pad, pad, pad], mode='reflect') | |
out = torch.nn.functional.max_pool2d(bin_img, kernel_size=ksize, stride=1, padding=0) | |
return out | |
def erode(bin_img, ksize=5): | |
out = 1 - dilate(1 - bin_img, ksize) | |
return out | |
class GaussianModel: | |
def setup_functions(self): | |
def build_covariance_from_scaling_rotation(scaling, scaling_modifier, rotation): | |
L = build_scaling_rotation(scaling_modifier * scaling, rotation) | |
actual_covariance = L @ L.transpose(1, 2) | |
symm = strip_symmetric(actual_covariance) | |
return symm | |
self.scaling_activation = torch.exp | |
self.scaling_inverse_activation = torch.log | |
self.covariance_activation = build_covariance_from_scaling_rotation | |
self.opacity_activation = torch.sigmoid | |
self.inverse_opacity_activation = inverse_sigmoid | |
self.rotation_activation = torch.nn.functional.normalize | |
def __init__(self, sh_degree : int): | |
self.active_sh_degree = 0 | |
self.max_sh_degree = sh_degree | |
self._xyz = torch.empty(0) | |
self._knn_f = torch.empty(0) | |
self._features_dc = torch.empty(0) | |
self._features_rest = torch.empty(0) | |
self._scaling = torch.empty(0) | |
self._rotation = torch.empty(0) | |
self._opacity = torch.empty(0) | |
self._language_feature = torch.empty(0) | |
self._instance_feature=torch.empty(0) | |
self.max_radii2D = torch.empty(0) | |
self.max_weight = torch.empty(0) | |
self.xyz_gradient_accum = torch.empty(0) | |
self.xyz_gradient_accum_abs = torch.empty(0) | |
self.denom = torch.empty(0) | |
self.denom_abs = torch.empty(0) | |
self.optimizer = None | |
self.cam_optimizer = None | |
self.percent_dense = 0 | |
self.spatial_lr_scale = 0 | |
self.knn_dists = None | |
self.knn_idx = None | |
self.setup_functions() | |
self.use_app = False | |
def capture(self, include_feature=False): | |
if include_feature: | |
return ( | |
self.active_sh_degree, | |
self._xyz, | |
self._knn_f, | |
self._features_dc, | |
self._features_rest, | |
self._scaling, | |
self._rotation, | |
self._opacity, | |
self._language_feature, | |
self._instance_feature, | |
self.max_radii2D, | |
self.max_weight, | |
self.xyz_gradient_accum, | |
self.xyz_gradient_accum_abs, | |
self.denom, | |
self.denom_abs, | |
self.optimizer.state_dict(), | |
self.cam_optimizer.state_dict(), | |
self.spatial_lr_scale, | |
self.P | |
) | |
else: | |
return ( | |
self.active_sh_degree, | |
self._xyz, | |
self._knn_f, | |
self._features_dc, | |
self._features_rest, | |
self._scaling, | |
self._rotation, | |
self._opacity, | |
self.max_radii2D, | |
self.max_weight, | |
self.xyz_gradient_accum, | |
self.xyz_gradient_accum_abs, | |
self.denom, | |
self.denom_abs, | |
self.optimizer.state_dict(), | |
self.cam_optimizer.state_dict(), | |
self.spatial_lr_scale, | |
self.P | |
) | |
def restore(self, model_args, training_args, mode='train'): | |
# Ckpt with training feature (20 arguments) | |
if len(model_args) == 20: | |
(self.active_sh_degree, | |
self._xyz, | |
self._knn_f, | |
self._features_dc, | |
self._features_rest, | |
self._scaling, | |
self._rotation, | |
self._opacity, | |
self._language_feature, # Added training feature: language feature | |
self._instance_feature, # Added training feature: instance feature | |
self.max_radii2D, | |
self.max_weight, | |
xyz_gradient_accum, | |
xyz_gradient_accum_abs, | |
denom, | |
denom_abs, | |
opt_dict, | |
cam_opt_dict, | |
self.spatial_lr_scale, | |
self.P | |
) = model_args | |
# Ckpt without training feature (18 arguments) | |
elif len(model_args) == 18: | |
(self.active_sh_degree, | |
self._xyz, | |
self._knn_f, | |
self._features_dc, | |
self._features_rest, | |
self._scaling, | |
self._rotation, | |
self._opacity, | |
self.max_radii2D, | |
self.max_weight, | |
xyz_gradient_accum, | |
xyz_gradient_accum_abs, | |
denom, | |
denom_abs, | |
opt_dict, | |
cam_opt_dict, | |
self.spatial_lr_scale, | |
self.P | |
) = model_args | |
if mode == 'train': | |
if isinstance(self.optimizer, PerPointAdam): | |
self.training_setup_pp(training_args) | |
else: | |
self.training_setup(training_args) | |
self.xyz_gradient_accum = xyz_gradient_accum | |
self.xyz_gradient_accum_abs = xyz_gradient_accum_abs | |
self.denom = denom | |
self.denom_abs = denom_abs | |
self.optimizer.load_state_dict(opt_dict) | |
self.cam_optimizer.load_state_dict(cam_opt_dict) | |
def get_scaling(self): | |
return self.scaling_activation(self._scaling) | |
def get_rotation(self): | |
return self.rotation_activation(self._rotation) | |
def get_xyz(self): | |
return self._xyz | |
def get_features(self): | |
features_dc = self._features_dc | |
features_rest = self._features_rest | |
return torch.cat((features_dc, features_rest), dim=1) | |
def get_opacity(self): | |
return self.opacity_activation(self._opacity) | |
def get_language_feature(self): | |
return self._language_feature | |
def get_instance_feature(self): | |
return self._instance_feature | |
def get_smallest_axis(self, return_idx=False): | |
rotation_matrices = self.get_rotation_matrix() | |
smallest_axis_idx = self.get_scaling.min(dim=-1)[1][..., None, None].expand(-1, 3, -1) | |
smallest_axis = rotation_matrices.gather(2, smallest_axis_idx) | |
if return_idx: | |
return smallest_axis.squeeze(dim=2), smallest_axis_idx[..., 0, 0] | |
return smallest_axis.squeeze(dim=2) | |
def get_normal(self, view_cam): | |
normal_global = self.get_smallest_axis() | |
gaussian_to_cam_global = view_cam.camera_center - self._xyz | |
neg_mask = (normal_global * gaussian_to_cam_global).sum(-1) < 0.0 | |
normal_global[neg_mask] = -normal_global[neg_mask] | |
return normal_global | |
def init_RT_seq(self, cam_list): | |
poses =[] | |
index_mapping = {} | |
for cam_idx, cam in enumerate(cam_list[1.0]): | |
p = get_tensor_from_camera(cam.world_view_transform.transpose(0, 1)) # R T -> quat t | |
poses.append(p) | |
index_mapping[cam.uid] = cam_idx | |
poses = torch.stack(poses) | |
self.index_mapping = index_mapping | |
self.P = poses.cuda().requires_grad_(True) | |
def get_RT(self, idx): | |
pose = self.P[idx] | |
return pose | |
def get_RT_test(self, idx): | |
pose = self.test_P[idx] | |
return pose | |
def get_rotation_matrix(self): | |
return quaternion_to_matrix(self.get_rotation) | |
def get_covariance(self, scaling_modifier = 1): | |
return self.covariance_activation(self.get_scaling, scaling_modifier, self._rotation) | |
def oneupSHdegree(self): | |
if self.active_sh_degree < self.max_sh_degree: | |
self.active_sh_degree += 1 | |
def create_from_pcd(self, pcd : BasicPointCloud, spatial_lr_scale : float): | |
self.spatial_lr_scale = spatial_lr_scale | |
fused_point_cloud = torch.tensor(np.asarray(pcd.points)).float().cuda() | |
fused_color = RGB2SH(torch.tensor(np.asarray(pcd.colors)).float().cuda()) | |
features = torch.zeros((fused_color.shape[0], 3, (self.max_sh_degree + 1) ** 2)).float().cuda() | |
features[:, :3, 0 ] = fused_color | |
features[:, 3:, 1:] = 0.0 | |
print("Number of points at initialisation : ", fused_point_cloud.shape[0]) | |
dist = torch.sqrt(torch.clamp_min(distCUDA2(torch.from_numpy(np.asarray(pcd.points)).float().cuda()), 0.0000001)) | |
# print(f"new scale {torch.quantile(dist, 0.1)}") | |
scales = torch.log(dist)[...,None].repeat(1, 3) | |
rots = torch.zeros((fused_point_cloud.shape[0], 4), device="cuda") | |
rots[:, 0] = 1 | |
opacities = inverse_sigmoid(0.1 * torch.ones((fused_point_cloud.shape[0], 1), dtype=torch.float, device="cuda")) | |
knn_f = torch.randn((fused_point_cloud.shape[0], 6)).float().cuda() | |
self._xyz = nn.Parameter(fused_point_cloud.requires_grad_(True)) | |
self._knn_f = nn.Parameter(knn_f.requires_grad_(True)) | |
self._features_dc = nn.Parameter(features[:,:,0:1].transpose(1, 2).contiguous().requires_grad_(True)) | |
self._features_rest = nn.Parameter(features[:,:,1:].transpose(1, 2).contiguous().requires_grad_(True)) | |
self._scaling = nn.Parameter(scales.requires_grad_(True)) | |
self._rotation = nn.Parameter(rots.requires_grad_(True)) | |
self._opacity = nn.Parameter(opacities.requires_grad_(True)) | |
self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda") | |
self.max_weight = torch.zeros((self.get_xyz.shape[0]), device="cuda") | |
language_feature = torch.zeros((fused_point_cloud.shape[0], 3), device="cuda") | |
self._language_feature = nn.Parameter(language_feature.requires_grad_(True)).requires_grad_(True) # dont train feature at first | |
# NOTE for instance distinguish | |
instance_feature = torch.zeros((fused_point_cloud.shape[0], 3), device="cuda") | |
self._instance_feature = nn.Parameter(instance_feature.requires_grad_(False)).requires_grad_(False) # just train feature at last | |
def training_setup(self, training_args, device): | |
self.percent_dense = training_args.percent_dense | |
self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device=device) | |
self.xyz_gradient_accum_abs = torch.zeros((self.get_xyz.shape[0], 1), device=device) | |
self.denom = torch.zeros((self.get_xyz.shape[0], 1), device=device) | |
self.denom_abs = torch.zeros((self.get_xyz.shape[0], 1), device=device) | |
self.abs_split_radii2D_threshold = training_args.abs_split_radii2D_threshold | |
self.max_abs_split_points = training_args.max_abs_split_points | |
self.max_all_points = training_args.max_all_points | |
l = [ | |
{'params': [self._xyz], 'lr': training_args.position_lr_init * self.spatial_lr_scale, "name": "xyz"}, | |
{'params': [self._knn_f], 'lr': 0.01, "name": "knn_f"}, | |
{'params': [self._features_dc], 'lr': training_args.feature_lr, "name": "f_dc"}, | |
{'params': [self._features_rest], 'lr': training_args.feature_lr / 20.0, "name": "f_rest"}, | |
{'params': [self._opacity], 'lr': training_args.opacity_lr, "name": "opacity"}, | |
{'params': [self._scaling], 'lr': training_args.scaling_lr, "name": "scaling"}, | |
{'params': [self._rotation], 'lr': training_args.rotation_lr, "name": "rotation"}, | |
{'params': [self._language_feature], 'lr': training_args.language_feature_lr, "name": "language_feature"}, # semantic | |
{'params': [self._instance_feature], 'lr': training_args.language_feature_lr, "name": "instance_feature"}, # instance | |
] | |
l_cam = [{'params': [self.P],'lr': training_args.rotation_lr*0.1, "name": "pose"},] | |
# l += l_cam | |
self.optimizer = torch.optim.Adam(l, lr=0.0, eps=1e-15) | |
self.cam_optimizer = torch.optim.Adam(l_cam, lr=0.0, eps=1e-15) | |
self.xyz_scheduler_args = get_expon_lr_func(lr_init=training_args.position_lr_init*self.spatial_lr_scale, | |
lr_final=training_args.position_lr_final*self.spatial_lr_scale, | |
lr_delay_mult=training_args.position_lr_delay_mult, | |
max_steps=training_args.position_lr_max_steps) | |
self.cam_scheduler_args = get_expon_lr_func( | |
lr_init=training_args.rotation_lr*0.1, | |
lr_final=training_args.rotation_lr*0.001, | |
lr_delay_mult=training_args.position_lr_delay_mult, | |
max_steps=training_args.iterations) | |
# per-point optimizer | |
def training_setup_pp(self, training_args, confidence_lr=None, device="cuda"): | |
self.percent_dense = training_args.percent_dense | |
self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device=device) | |
self.xyz_gradient_accum_abs = torch.zeros((self.get_xyz.shape[0], 1), device=device) | |
self.denom = torch.zeros((self.get_xyz.shape[0], 1), device=device) | |
self.denom_abs = torch.zeros((self.get_xyz.shape[0], 1), device=device) | |
self.abs_split_radii2D_threshold = training_args.abs_split_radii2D_threshold | |
self.max_abs_split_points = training_args.max_abs_split_points | |
self.max_all_points = training_args.max_all_points | |
self.per_point_lr = confidence_lr | |
l = [ | |
{'params': [self._xyz], 'per_point_lr': self.per_point_lr, 'lr': training_args.position_lr_init * self.spatial_lr_scale, "name": "xyz"}, | |
{'params': [self._knn_f], 'lr': 0.01, "name": "knn_f"}, | |
{'params': [self._features_dc], 'lr': training_args.feature_lr, "name": "f_dc"}, | |
{'params': [self._features_rest], 'lr': training_args.feature_lr / 20.0, "name": "f_rest"}, | |
{'params': [self._opacity], 'lr': training_args.opacity_lr, "name": "opacity"}, | |
{'params': [self._scaling], 'lr': training_args.scaling_lr, "name": "scaling"}, | |
{'params': [self._rotation], 'lr': training_args.rotation_lr, "name": "rotation"}, | |
{'params': [self._language_feature], 'lr': training_args.language_feature_lr, "name": "language_feature"}, # semantic | |
{'params': [self._instance_feature], 'lr': training_args.language_feature_lr, "name": "instance_feature"}, # instance | |
] | |
l_cam = [{'params': [self.P],'lr': training_args.rotation_lr*0.1, "name": "pose"},] | |
# l += l_cam | |
self.optimizer = PerPointAdam(l, lr=0, betas=(0.9, 0.999), eps=1e-15, weight_decay=0.0) | |
self.cam_optimizer = torch.optim.Adam(l_cam, lr=0.0, eps=1e-15) | |
self.xyz_scheduler_args = get_expon_lr_func(lr_init=training_args.position_lr_init*self.spatial_lr_scale, | |
lr_final=training_args.position_lr_final*self.spatial_lr_scale, | |
lr_delay_mult=training_args.position_lr_delay_mult, | |
max_steps=training_args.position_lr_max_steps) | |
self.cam_scheduler_args = get_expon_lr_func( | |
lr_init=training_args.rotation_lr*0.1, | |
lr_final=training_args.rotation_lr*0.001, | |
lr_delay_mult=training_args.position_lr_delay_mult, | |
max_steps=training_args.iterations) | |
def clip_grad(self, norm=1.0): | |
for group in self.optimizer.param_groups: | |
torch.nn.utils.clip_grad_norm_(group["params"][0], norm) | |
def update_learning_rate(self, iteration): | |
''' Learning rate scheduling per step ''' | |
for param_group in self.cam_optimizer.param_groups: | |
if param_group["name"] == "pose": | |
lr = self.cam_scheduler_args(iteration) | |
param_group['lr'] = lr | |
for param_group in self.optimizer.param_groups: | |
if param_group["name"] == "xyz": | |
lr = self.xyz_scheduler_args(iteration) | |
param_group['lr'] = lr | |
def construct_list_of_attributes(self, include_feature=False): | |
l = ['x', 'y', 'z', 'nx', 'ny', 'nz'] | |
# All channels except the 3 DC | |
for i in range(self._features_dc.shape[1]*self._features_dc.shape[2]): | |
l.append('f_dc_{}'.format(i)) | |
for i in range(self._features_rest.shape[1]*self._features_rest.shape[2]): | |
l.append('f_rest_{}'.format(i)) | |
l.append('opacity') | |
for i in range(self._scaling.shape[1]): | |
l.append('scale_{}'.format(i)) | |
for i in range(self._rotation.shape[1]): | |
l.append('rot_{}'.format(i)) | |
if include_feature: | |
for i in range(self._language_feature.shape[1]): | |
l.append('language_feature_{}'.format(i)) | |
for i in range(self._instance_feature.shape[1]): | |
l.append('instance_feature_{}'.format(i)) | |
return l | |
def save_ply(self, path, mask=None, include_feature=False): | |
mkdir_p(os.path.dirname(path)) | |
xyz = self._xyz.detach().cpu().numpy() | |
normals = np.zeros_like(xyz) | |
f_dc = self._features_dc.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy() | |
f_rest = self._features_rest.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy() | |
opacities = self._opacity.detach().cpu().numpy() | |
scale = self._scaling.detach().cpu().numpy() | |
rotation = self._rotation.detach().cpu().numpy() | |
language_feature = self._language_feature.detach().cpu().numpy() | |
instance_feature = self._instance_feature.detach().cpu().numpy() | |
dtype_full = [(attribute, 'f4') for attribute in self.construct_list_of_attributes(include_feature)] | |
elements = np.empty(xyz.shape[0], dtype=dtype_full) | |
if include_feature: | |
attributes = np.concatenate((xyz, normals, f_dc, f_rest, opacities, scale, rotation, language_feature, instance_feature), axis=1) | |
else: | |
attributes = np.concatenate((xyz, normals, f_dc, f_rest, opacities, scale, rotation), axis=1) | |
elements[:] = list(map(tuple, attributes)) | |
el = PlyElement.describe(elements, 'vertex') | |
PlyData([el]).write(path) | |
def reset_opacity(self): | |
opacities_new = inverse_sigmoid(torch.min(self.get_opacity, torch.ones_like(self.get_opacity)*0.01)) | |
optimizable_tensors = self.replace_tensor_to_optimizer(opacities_new, "opacity") | |
self._opacity = optimizable_tensors["opacity"] | |
def load_ply(self, path): | |
plydata = PlyData.read(path) | |
xyz = np.stack((np.asarray(plydata.elements[0]["x"]), | |
np.asarray(plydata.elements[0]["y"]), | |
np.asarray(plydata.elements[0]["z"])), axis=1) | |
opacities = np.asarray(plydata.elements[0]["opacity"])[..., np.newaxis] | |
features_dc = np.zeros((xyz.shape[0], 3, 1)) | |
features_dc[:, 0, 0] = np.asarray(plydata.elements[0]["f_dc_0"]) | |
features_dc[:, 1, 0] = np.asarray(plydata.elements[0]["f_dc_1"]) | |
features_dc[:, 2, 0] = np.asarray(plydata.elements[0]["f_dc_2"]) | |
extra_f_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("f_rest_")] | |
extra_f_names = sorted(extra_f_names, key = lambda x: int(x.split('_')[-1])) | |
assert len(extra_f_names)==3*(self.max_sh_degree + 1) ** 2 - 3 | |
features_extra = np.zeros((xyz.shape[0], len(extra_f_names))) | |
for idx, attr_name in enumerate(extra_f_names): | |
features_extra[:, idx] = np.asarray(plydata.elements[0][attr_name]) | |
# Reshape (P,F*SH_coeffs) to (P, F, SH_coeffs except DC) | |
features_extra = features_extra.reshape((features_extra.shape[0], 3, (self.max_sh_degree + 1) ** 2 - 1)) | |
scale_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("scale_")] | |
scale_names = sorted(scale_names, key = lambda x: int(x.split('_')[-1])) | |
scales = np.zeros((xyz.shape[0], len(scale_names))) | |
for idx, attr_name in enumerate(scale_names): | |
scales[:, idx] = np.asarray(plydata.elements[0][attr_name]) | |
rot_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("rot")] | |
rot_names = sorted(rot_names, key = lambda x: int(x.split('_')[-1])) | |
rots = np.zeros((xyz.shape[0], len(rot_names))) | |
for idx, attr_name in enumerate(rot_names): | |
rots[:, idx] = np.asarray(plydata.elements[0][attr_name]) | |
language_feature_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("language_feature")] | |
language_feature_names = sorted(language_feature_names, key = lambda x: int(x.split('_')[-1])) | |
language_feature = np.zeros((xyz.shape[0], len(language_feature_names))) | |
for idx, attr_name in enumerate(language_feature_names): | |
language_feature[:, idx] = np.asarray(plydata.elements[0][attr_name]) | |
# NOTE instance | |
instance_feature_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("instance_feature")] | |
instance_feature_names = sorted(instance_feature_names, key = lambda x: int(x.split('_')[-1])) | |
instance_feature = np.zeros((xyz.shape[0], len(instance_feature_names))) | |
for idx, attr_name in enumerate(instance_feature_names): | |
instance_feature[:, idx] = np.asarray(plydata.elements[0][attr_name]) | |
self._xyz = nn.Parameter(torch.tensor(xyz, dtype=torch.float, device="cuda").requires_grad_(True)) | |
self._features_dc = nn.Parameter(torch.tensor(features_dc, dtype=torch.float, device="cuda").transpose(1, 2).contiguous().requires_grad_(True)) | |
self._features_rest = nn.Parameter(torch.tensor(features_extra, dtype=torch.float, device="cuda").transpose(1, 2).contiguous().requires_grad_(True)) | |
self._opacity = nn.Parameter(torch.tensor(opacities, dtype=torch.float, device="cuda").requires_grad_(True)) | |
self._scaling = nn.Parameter(torch.tensor(scales, dtype=torch.float, device="cuda").requires_grad_(True)) | |
self._rotation = nn.Parameter(torch.tensor(rots, dtype=torch.float, device="cuda").requires_grad_(True)) | |
self._language_feature = nn.Parameter(torch.tensor(language_feature, dtype=torch.float, device="cuda").requires_grad_(False)) | |
self._instance_feature = nn.Parameter(torch.tensor(instance_feature, dtype=torch.float, device="cuda").requires_grad_(False)) | |
self.active_sh_degree = self.max_sh_degree | |
def replace_tensor_to_optimizer(self, tensor, name): | |
optimizable_tensors = {} | |
for group in self.optimizer.param_groups: | |
if group["name"] == name: | |
stored_state = self.optimizer.state.get(group['params'][0], None) | |
stored_state["exp_avg"] = torch.zeros_like(tensor) | |
stored_state["exp_avg_sq"] = torch.zeros_like(tensor) | |
del self.optimizer.state[group['params'][0]] | |
group["params"][0] = nn.Parameter(tensor.requires_grad_(True)) | |
self.optimizer.state[group['params'][0]] = stored_state | |
optimizable_tensors[group["name"]] = group["params"][0] | |
return optimizable_tensors | |
def _prune_optimizer(self, mask): | |
optimizable_tensors = {} | |
for group in self.optimizer.param_groups: | |
stored_state = self.optimizer.state.get(group['params'][0], None) | |
if stored_state is not None: | |
stored_state["exp_avg"] = stored_state["exp_avg"][mask] | |
stored_state["exp_avg_sq"] = stored_state["exp_avg_sq"][mask] | |
del self.optimizer.state[group['params'][0]] | |
group["params"][0] = nn.Parameter((group["params"][0][mask].requires_grad_(True))) | |
self.optimizer.state[group['params'][0]] = stored_state | |
optimizable_tensors[group["name"]] = group["params"][0] | |
else: | |
group["params"][0] = nn.Parameter(group["params"][0][mask].requires_grad_(True)) | |
optimizable_tensors[group["name"]] = group["params"][0] | |
return optimizable_tensors | |
def prune_points(self, mask): | |
valid_points_mask = ~mask | |
optimizable_tensors = self._prune_optimizer(valid_points_mask) | |
self._xyz = optimizable_tensors["xyz"] | |
self._knn_f = optimizable_tensors["knn_f"] | |
self._features_dc = optimizable_tensors["f_dc"] | |
self._features_rest = optimizable_tensors["f_rest"] | |
self._opacity = optimizable_tensors["opacity"] | |
self._scaling = optimizable_tensors["scaling"] | |
self._rotation = optimizable_tensors["rotation"] | |
self._language_feature = optimizable_tensors["language_feature"] | |
self._instance_feature = optimizable_tensors["instance_feature"] | |
self.xyz_gradient_accum = self.xyz_gradient_accum[valid_points_mask] | |
self.xyz_gradient_accum_abs = self.xyz_gradient_accum_abs[valid_points_mask] | |
self.denom = self.denom[valid_points_mask] | |
self.denom_abs = self.denom_abs[valid_points_mask] | |
self.max_radii2D = self.max_radii2D[valid_points_mask] | |
self.max_weight = self.max_weight[valid_points_mask] | |
def cat_tensors_to_optimizer(self, tensors_dict): | |
optimizable_tensors = {} | |
for group in self.optimizer.param_groups: | |
assert len(group["params"]) == 1 | |
extension_tensor = tensors_dict[group["name"]] | |
stored_state = self.optimizer.state.get(group['params'][0], None) | |
if stored_state is not None: | |
stored_state["exp_avg"] = torch.cat((stored_state["exp_avg"], torch.zeros_like(extension_tensor)), dim=0) | |
stored_state["exp_avg_sq"] = torch.cat((stored_state["exp_avg_sq"], torch.zeros_like(extension_tensor)), dim=0) | |
del self.optimizer.state[group['params'][0]] | |
group["params"][0] = nn.Parameter(torch.cat((group["params"][0], extension_tensor), dim=0).requires_grad_(True)) | |
self.optimizer.state[group['params'][0]] = stored_state | |
optimizable_tensors[group["name"]] = group["params"][0] | |
else: | |
group["params"][0] = nn.Parameter(torch.cat((group["params"][0], extension_tensor), dim=0).requires_grad_(True)) | |
optimizable_tensors[group["name"]] = group["params"][0] | |
return optimizable_tensors | |
def densification_postfix(self, new_xyz, new_knn_f, new_features_dc, new_features_rest, new_opacities, new_scaling, new_rotation, new_language_feature, new_instance_feature): | |
d = {"xyz": new_xyz, | |
"knn_f": new_knn_f, | |
"f_dc": new_features_dc, | |
"f_rest": new_features_rest, | |
"opacity": new_opacities, | |
"scaling" : new_scaling, | |
"rotation" : new_rotation, | |
"language_feature": new_language_feature, | |
"instance_feature": new_instance_feature, | |
} | |
optimizable_tensors = self.cat_tensors_to_optimizer(d) | |
self._xyz = optimizable_tensors["xyz"] | |
self._knn_f = optimizable_tensors["knn_f"] | |
self._features_dc = optimizable_tensors["f_dc"] | |
self._features_rest = optimizable_tensors["f_rest"] | |
self._opacity = optimizable_tensors["opacity"] | |
self._scaling = optimizable_tensors["scaling"] | |
self._rotation = optimizable_tensors["rotation"] | |
self._language_feature = optimizable_tensors["language_feature"] | |
self._instance_feature = optimizable_tensors["instance_feature"] | |
self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device="cuda") | |
self.xyz_gradient_accum_abs = torch.zeros((self.get_xyz.shape[0], 1), device="cuda") | |
self.denom = torch.zeros((self.get_xyz.shape[0], 1), device="cuda") | |
self.denom_abs = torch.zeros((self.get_xyz.shape[0], 1), device="cuda") | |
self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda") | |
self.max_weight = torch.zeros((self.get_xyz.shape[0]), device="cuda") | |
def densify_and_split(self, grads, grad_threshold, grads_abs, grad_abs_threshold, scene_extent, max_radii2D, N=2): | |
n_init_points = self.get_xyz.shape[0] | |
# Extract points that satisfy the gradient condition | |
padded_grad = torch.zeros((n_init_points), device="cuda") | |
padded_grad[:grads.shape[0]] = grads.squeeze() | |
padded_grads_abs = torch.zeros((n_init_points), device="cuda") | |
padded_grads_abs[:grads_abs.shape[0]] = grads_abs.squeeze() | |
padded_max_radii2D = torch.zeros((n_init_points), device="cuda") | |
padded_max_radii2D[:max_radii2D.shape[0]] = max_radii2D.squeeze() | |
selected_pts_mask = torch.where(padded_grad >= grad_threshold, True, False) | |
selected_pts_mask = torch.logical_and(selected_pts_mask, | |
torch.max(self.get_scaling, dim=1).values > self.percent_dense*scene_extent) | |
if selected_pts_mask.sum() + n_init_points > self.max_all_points: | |
limited_num = self.max_all_points - n_init_points | |
padded_grad[~selected_pts_mask] = 0 | |
ratio = limited_num / float(n_init_points) | |
threshold = torch.quantile(padded_grad, (1.0-ratio)) | |
selected_pts_mask = torch.where(padded_grad > threshold, True, False) | |
# print(f"split {selected_pts_mask.sum()}, raddi2D {padded_max_radii2D.max()} ,{padded_max_radii2D.median()}") | |
else: | |
padded_grads_abs[selected_pts_mask] = 0 | |
mask = (torch.max(self.get_scaling, dim=1).values > self.percent_dense*scene_extent) & (padded_max_radii2D > self.abs_split_radii2D_threshold) | |
padded_grads_abs[~mask] = 0 | |
selected_pts_mask_abs = torch.where(padded_grads_abs >= grad_abs_threshold, True, False) | |
limited_num = min(self.max_all_points - n_init_points - selected_pts_mask.sum(), self.max_abs_split_points) | |
if selected_pts_mask_abs.sum() > limited_num: | |
ratio = limited_num / float(n_init_points) | |
threshold = torch.quantile(padded_grads_abs, (1.0-ratio)) | |
selected_pts_mask_abs = torch.where(padded_grads_abs > threshold, True, False) | |
selected_pts_mask = torch.logical_or(selected_pts_mask, selected_pts_mask_abs) | |
# print(f"split {selected_pts_mask.sum()}, abs {selected_pts_mask_abs.sum()}, raddi2D {padded_max_radii2D.max()} ,{padded_max_radii2D.median()}") | |
stds = self.get_scaling[selected_pts_mask].repeat(N,1) | |
means =torch.zeros((stds.size(0), 3),device="cuda") | |
samples = torch.normal(mean=means, std=stds) | |
rots = build_rotation(self._rotation[selected_pts_mask]).repeat(N,1,1) | |
new_xyz = torch.bmm(rots, samples.unsqueeze(-1)).squeeze(-1) + self.get_xyz[selected_pts_mask].repeat(N, 1) | |
new_scaling = self.scaling_inverse_activation(self.get_scaling[selected_pts_mask].repeat(N,1) / (0.8*N)) | |
new_rotation = self._rotation[selected_pts_mask].repeat(N,1) | |
new_features_dc = self._features_dc[selected_pts_mask].repeat(N,1,1) | |
new_features_rest = self._features_rest[selected_pts_mask].repeat(N,1,1) | |
new_opacity = self._opacity[selected_pts_mask].repeat(N,1) | |
new_knn_f = self._knn_f[selected_pts_mask].repeat(N,1) | |
new_language_feature = self._language_feature[selected_pts_mask].repeat(N,1) | |
new_instance_feature = self._instance_feature[selected_pts_mask].repeat(N,1) | |
self.densification_postfix(new_xyz, new_knn_f, new_features_dc, new_features_rest, new_opacity, new_scaling, new_rotation, new_language_feature, new_instance_feature) | |
prune_filter = torch.cat((selected_pts_mask, torch.zeros(N * selected_pts_mask.sum(), device="cuda", dtype=bool))) | |
self.prune_points(prune_filter) | |
def densify_and_clone(self, grads, grad_threshold, scene_extent): | |
n_init_points = self.get_xyz.shape[0] | |
# Extract points that satisfy the gradient condition | |
selected_pts_mask = torch.where(torch.norm(grads, dim=-1) >= grad_threshold, True, False) | |
selected_pts_mask = torch.logical_and(selected_pts_mask, | |
torch.max(self.get_scaling, dim=1).values <= self.percent_dense*scene_extent) | |
if selected_pts_mask.sum() + n_init_points > self.max_all_points: | |
limited_num = self.max_all_points - n_init_points | |
grads_tmp = grads.squeeze().clone() | |
grads_tmp[~selected_pts_mask] = 0 | |
ratio = min(limited_num / float(n_init_points), 1) | |
threshold = torch.quantile(grads_tmp, (1.0-ratio)) | |
selected_pts_mask = torch.where(grads_tmp > threshold, True, False) | |
if selected_pts_mask.sum() > 0: | |
# print(f"clone {selected_pts_mask.sum()}") | |
new_xyz = self._xyz[selected_pts_mask] | |
stds = self.get_scaling[selected_pts_mask] | |
means =torch.zeros((stds.size(0), 3),device="cuda") | |
samples = torch.normal(mean=means, std=stds) | |
rots = build_rotation(self._rotation[selected_pts_mask]) | |
new_xyz = torch.bmm(rots, samples.unsqueeze(-1)).squeeze(-1) + self.get_xyz[selected_pts_mask] | |
new_features_dc = self._features_dc[selected_pts_mask] | |
new_features_rest = self._features_rest[selected_pts_mask] | |
new_opacities = self._opacity[selected_pts_mask] | |
new_scaling = self._scaling[selected_pts_mask] | |
new_rotation = self._rotation[selected_pts_mask] | |
new_knn_f = self._knn_f[selected_pts_mask] | |
new_language_feature = self._language_feature[selected_pts_mask] | |
new_instance_feature = self._instance_feature[selected_pts_mask] | |
self.densification_postfix(new_xyz, new_knn_f, new_features_dc, new_features_rest, new_opacities, new_scaling, new_rotation, new_language_feature, new_instance_feature) | |
def densify_and_prune(self, max_grad, abs_max_grad, min_opacity, extent, max_screen_size): | |
grads = self.xyz_gradient_accum / self.denom | |
grads_abs = self.xyz_gradient_accum_abs / self.denom_abs | |
grads[grads.isnan()] = 0.0 | |
grads_abs[grads_abs.isnan()] = 0.0 | |
max_radii2D = self.max_radii2D.clone() | |
self.densify_and_clone(grads, max_grad, extent) | |
self.densify_and_split(grads, max_grad, grads_abs, abs_max_grad, extent, max_radii2D) | |
prune_mask = (self.get_opacity < min_opacity).squeeze() | |
if max_screen_size: | |
big_points_vs = self.max_radii2D > max_screen_size | |
big_points_ws = self.get_scaling.max(dim=1).values > 0.1 * extent | |
prune_mask = torch.logical_or(torch.logical_or(prune_mask, big_points_vs), big_points_ws) | |
self.prune_points(prune_mask) | |
# print(f"all points {self._xyz.shape[0]}") | |
torch.cuda.empty_cache() | |
def add_densification_stats(self, viewspace_point_tensor, viewspace_point_tensor_abs, update_filter): | |
self.xyz_gradient_accum[update_filter] += torch.norm(viewspace_point_tensor.grad[update_filter,:2], dim=-1, keepdim=True) | |
self.xyz_gradient_accum_abs[update_filter] += torch.norm(viewspace_point_tensor_abs.grad[update_filter,:2], dim=-1, keepdim=True) | |
self.denom[update_filter] += 1 | |
self.denom_abs[update_filter] += 1 | |
def get_points_depth_in_depth_map(self, fov_camera, depth, points_in_camera_space, scale=1): | |
st = max(int(scale/2)-1,0) | |
depth_view = depth[None,:,st::scale,st::scale] | |
W, H = int(fov_camera.image_width/scale), int(fov_camera.image_height/scale) | |
depth_view = depth_view[:H, :W] | |
pts_projections = torch.stack( | |
[points_in_camera_space[:,0] * fov_camera.Fx / points_in_camera_space[:,2] + fov_camera.Cx, | |
points_in_camera_space[:,1] * fov_camera.Fy / points_in_camera_space[:,2] + fov_camera.Cy], -1).float()/scale | |
mask = (pts_projections[:, 0] > 0) & (pts_projections[:, 0] < W) &\ | |
(pts_projections[:, 1] > 0) & (pts_projections[:, 1] < H) & (points_in_camera_space[:,2] > 0.1) | |
pts_projections[..., 0] /= ((W - 1) / 2) | |
pts_projections[..., 1] /= ((H - 1) / 2) | |
pts_projections -= 1 | |
pts_projections = pts_projections.view(1, -1, 1, 2) | |
map_z = torch.nn.functional.grid_sample(input=depth_view, | |
grid=pts_projections, | |
mode='bilinear', | |
padding_mode='border', | |
align_corners=True | |
)[0, :, :, 0] | |
return map_z, mask | |
def get_points_from_depth(self, fov_camera, depth, scale=1): | |
st = int(max(int(scale/2)-1,0)) | |
depth_view = depth.squeeze()[st::scale,st::scale] | |
rays_d = fov_camera.get_rays(scale=scale) | |
depth_view = depth_view[:rays_d.shape[0], :rays_d.shape[1]] | |
pts = (rays_d * depth_view[..., None]).reshape(-1,3) | |
R = torch.tensor(fov_camera.R).float().cuda() | |
T = torch.tensor(fov_camera.T).float().cuda() | |
pts = (pts-T)@R.transpose(-1,-2) | |
return pts | |
def change_reqiures_grad(self, change, iteration, quiet=True): | |
if change == "geometry": | |
self._xyz.requires_grad_(True) | |
self._knn_f.requires_grad_(True) | |
self._features_dc.requires_grad_(True) | |
self._features_rest.requires_grad_(True) | |
self._scaling.requires_grad_(True) | |
self._rotation.requires_grad_(True) | |
self._opacity.requires_grad_(True) | |
self.P.requires_grad_(True) | |
self._language_feature.requires_grad_(False) | |
self._instance_feature.requires_grad_(False) | |
if not quiet: | |
print(f'\n[ITER {iteration}] Training gaussian params') | |
elif change == 'semantic': | |
self._xyz.requires_grad_(True) | |
self._knn_f.requires_grad_(True) | |
self._features_dc.requires_grad_(True) | |
self._features_rest.requires_grad_(True) | |
self._scaling.requires_grad_(True) | |
self._rotation.requires_grad_(True) | |
self._opacity.requires_grad_(True) | |
self.P.requires_grad_(True) | |
self._language_feature.requires_grad_(True) | |
self._instance_feature.requires_grad_(False) | |
if not quiet: | |
print(f'\n[ITER {iteration}] Training gaussian params and language feature') | |
elif change == 'semantic_only': | |
self._xyz.requires_grad_(False) | |
self._knn_f.requires_grad_(False) | |
self._features_dc.requires_grad_(False) | |
self._features_rest.requires_grad_(False) | |
self._scaling.requires_grad_(False) | |
self._rotation.requires_grad_(False) | |
self._opacity.requires_grad_(False) | |
self.P.requires_grad_(False) | |
self._language_feature.requires_grad_(True) | |
self._instance_feature.requires_grad_(False) | |
if not quiet: | |
print(f'\n[ITER {iteration}] Training language feature') | |
elif change == 'instance': | |
self._xyz.requires_grad_(False) | |
self._knn_f.requires_grad_(False) | |
self._features_dc.requires_grad_(False) | |
self._features_rest.requires_grad_(False) | |
self._scaling.requires_grad_(False) | |
self._rotation.requires_grad_(False) | |
self._opacity.requires_grad_(False) | |
self.P.requires_grad_(False) | |
self._language_feature.requires_grad_(False) | |
self._instance_feature.requires_grad_(True) | |
if not quiet: | |
print(f'\n[ITER {iteration}] Training instance feature') | |
elif change == "pose_only": | |
self._xyz.requires_grad_(False) | |
self._knn_f.requires_grad_(False) | |
self._features_dc.requires_grad_(False) | |
self._features_rest.requires_grad_(False) | |
self._scaling.requires_grad_(False) | |
self._rotation.requires_grad_(False) | |
self._opacity.requires_grad_(False) | |
self.P.requires_grad_(True) | |
self._language_feature.requires_grad_(False) | |
self._instance_feature.requires_grad_(False) | |
if not quiet: | |
print(f'\n[ITER {iteration}] Training instance feature') | |
elif change == 'finetune': | |
self._xyz.requires_grad_(False) | |
self._knn_f.requires_grad_(False) | |
self._features_dc.requires_grad_(True) | |
self._features_rest.requires_grad_(True) | |
self._scaling.requires_grad_(False) | |
self._rotation.requires_grad_(False) | |
self._opacity.requires_grad_(False) | |
self.P.requires_grad_(False) | |
self._language_feature.requires_grad_(False) | |
self._instance_feature.requires_grad_(False) | |
if not quiet: | |
print(f'\n[ITER {iteration}] finetune') | |
else: | |
raise ValueError('Unknown type!') | |