import gradio as gr import torch import os # Function to check if the model is loaded model = None def load_model(model_path): global model if os.path.exists(model_path): model = torch.hub.load(model_path, 'StableNormal', trust_repo=True) return 'Model loaded successfully!' else: return 'Error: Model path does not exist.' # Function to process input and generate output def process_input(image, model_path): if model is None: return 'Error: Model not loaded. Please load the model first.' try: # Simulate processing the image with the model # This should be replaced with actual model inference code output = f'Processed image with model at {model_path}' return output except Exception as e: return f'Error during processing: {str(e)}' # Gradio interface with gr.Blocks() as demo: gr.Markdown(""" # LangScene-X Gradio Interface This app allows you to load a model and process images using the LangScene-X framework. **Instructions:** 1. Load the model by providing the model path. 2. Upload an image to process. 3. Click on 'Process Image' to see the output. """) model_path = gr.Textbox(label='Model Path', placeholder='Enter the path to the model') load_button = gr.Button('Load Model') load_output = gr.Textbox(label='Load Model Output') load_button.click(load_model, inputs=model_path, outputs=load_output) image_input = gr.Image(type='pil', label='Upload Image') process_button = gr.Button('Process Image') output_text = gr.Textbox(label='Output') process_button.click(process_input, inputs=[image_input, model_path], outputs=output_text) # Launch the app if __name__ == '__main__': demo.launch()