/* * Copyright (C) 2023, Inria * GRAPHDECO research group, https://team.inria.fr/graphdeco * All rights reserved. * * This software is free for non-commercial, research and evaluation use * under the terms of the LICENSE.md file. * * For inquiries contact george.drettakis@inria.fr */ #include "forward.h" #include "auxiliary.h" #include #include #include namespace cg = cooperative_groups; // Forward method for converting the input spherical harmonics // coefficients of each Gaussian to a simple RGB color. __device__ glm::vec3 computeColorFromSH(int idx, int deg, int max_coeffs, const glm::vec3 *means, glm::vec3 campos, const float *shs, bool *clamped) { // The implementation is loosely based on code for // "Differentiable Point-Based Radiance Fields for // Efficient View Synthesis" by Zhang et al. (2022) glm::vec3 pos = means[idx]; glm::vec3 dir = pos - campos; dir = dir / glm::length(dir); glm::vec3 *sh = ((glm::vec3 *)shs) + idx * max_coeffs; glm::vec3 result = SH_C0 * sh[0]; if (deg > 0) { float x = dir.x; float y = dir.y; float z = dir.z; result = result - SH_C1 * y * sh[1] + SH_C1 * z * sh[2] - SH_C1 * x * sh[3]; if (deg > 1) { float xx = x * x, yy = y * y, zz = z * z; float xy = x * y, yz = y * z, xz = x * z; result = result + SH_C2[0] * xy * sh[4] + SH_C2[1] * yz * sh[5] + SH_C2[2] * (2.0f * zz - xx - yy) * sh[6] + SH_C2[3] * xz * sh[7] + SH_C2[4] * (xx - yy) * sh[8]; if (deg > 2) { result = result + SH_C3[0] * y * (3.0f * xx - yy) * sh[9] + SH_C3[1] * xy * z * sh[10] + SH_C3[2] * y * (4.0f * zz - xx - yy) * sh[11] + SH_C3[3] * z * (2.0f * zz - 3.0f * xx - 3.0f * yy) * sh[12] + SH_C3[4] * x * (4.0f * zz - xx - yy) * sh[13] + SH_C3[5] * z * (xx - yy) * sh[14] + SH_C3[6] * x * (xx - 3.0f * yy) * sh[15]; } } } result += 0.5f; // RGB colors are clamped to positive values. If values are // clamped, we need to keep track of this for the backward pass. clamped[3 * idx + 0] = (result.x < 0); clamped[3 * idx + 1] = (result.y < 0); clamped[3 * idx + 2] = (result.z < 0); return glm::max(result, 0.0f); } // Forward version of 2D covariance matrix computation __device__ float3 computeCov2D(const float3 &mean, float focal_x, float focal_y, float tan_fovx, float tan_fovy, const float *cov3D, const float *viewmatrix) { // The following models the steps outlined by equations 29 // and 31 in "EWA Splatting" (Zwicker et al., 2002). // Additionally considers aspect / scaling of viewport. // Transposes used to account for row-/column-major conventions. float3 t = transformPoint4x3(mean, viewmatrix); const float limx = 1.3f * tan_fovx; const float limy = 1.3f * tan_fovy; const float txtz = t.x / t.z; const float tytz = t.y / t.z; t.x = min(limx, max(-limx, txtz)) * t.z; t.y = min(limy, max(-limy, tytz)) * t.z; glm::mat3 J = glm::mat3( focal_x / t.z, 0.0f, -(focal_x * t.x) / (t.z * t.z), 0.0f, focal_y / t.z, -(focal_y * t.y) / (t.z * t.z), 0, 0, 0); glm::mat3 W = glm::mat3( viewmatrix[0], viewmatrix[4], viewmatrix[8], viewmatrix[1], viewmatrix[5], viewmatrix[9], viewmatrix[2], viewmatrix[6], viewmatrix[10]); glm::mat3 T = W * J; glm::mat3 Vrk = glm::mat3( cov3D[0], cov3D[1], cov3D[2], cov3D[1], cov3D[3], cov3D[4], cov3D[2], cov3D[4], cov3D[5]); glm::mat3 cov = glm::transpose(T) * glm::transpose(Vrk) * T; // Apply low-pass filter: every Gaussian should be at least // one pixel wide/high. Discard 3rd row and column. cov[0][0] += 0.3f; cov[1][1] += 0.3f; return {float(cov[0][0]), float(cov[0][1]), float(cov[1][1])}; } // Forward method for converting scale and rotation properties of each // Gaussian to a 3D covariance matrix in world space. Also takes care // of quaternion normalization. __device__ void computeCov3D(const glm::vec3 scale, float mod, const glm::vec4 rot, float *cov3D) { // Create scaling matrix glm::mat3 S = glm::mat3(1.0f); S[0][0] = mod * scale.x; S[1][1] = mod * scale.y; S[2][2] = mod * scale.z; // Normalize quaternion to get valid rotation glm::vec4 q = rot; // / glm::length(rot); float r = q.x; float x = q.y; float y = q.z; float z = q.w; // Compute rotation matrix from quaternion glm::mat3 R = glm::mat3( 1.f - 2.f * (y * y + z * z), 2.f * (x * y - r * z), 2.f * (x * z + r * y), 2.f * (x * y + r * z), 1.f - 2.f * (x * x + z * z), 2.f * (y * z - r * x), 2.f * (x * z - r * y), 2.f * (y * z + r * x), 1.f - 2.f * (x * x + y * y)); glm::mat3 M = S * R; // Compute 3D world covariance matrix Sigma glm::mat3 Sigma = glm::transpose(M) * M; // Covariance is symmetric, only store upper right cov3D[0] = Sigma[0][0]; cov3D[1] = Sigma[0][1]; cov3D[2] = Sigma[0][2]; cov3D[3] = Sigma[1][1]; cov3D[4] = Sigma[1][2]; cov3D[5] = Sigma[2][2]; } // Perform initial steps for each Gaussian prior to rasterization. template __global__ void preprocessCUDA(int P, int D, int M, const float *orig_points, const glm::vec3 *scales, const float scale_modifier, const glm::vec4 *rotations, const float *opacities, const float *shs, bool *clamped, const float *cov3D_precomp, const float *colors_precomp, const float *viewmatrix, const float *projmatrix, const glm::vec3 *cam_pos, const int W, int H, const float tan_fovx, float tan_fovy, const float focal_x, float focal_y, int *radii, float2 *points_xy_image, float *depths, float *cov3Ds, float *rgb, float4 *conic_opacity, const dim3 grid, uint32_t *tiles_touched, bool prefiltered) { auto idx = cg::this_grid().thread_rank(); if (idx >= P) return; // Initialize radius and touched tiles to 0. If this isn't changed, // this Gaussian will not be processed further. radii[idx] = 0; tiles_touched[idx] = 0; // Perform near culling, quit if outside. float3 p_view; if (!in_frustum(idx, orig_points, viewmatrix, projmatrix, prefiltered, p_view)) return; // Transform point by projecting float3 p_orig = {orig_points[3 * idx], orig_points[3 * idx + 1], orig_points[3 * idx + 2]}; float4 p_hom = transformPoint4x4(p_orig, projmatrix); float p_w = 1.0f / (p_hom.w + 0.0000001f); float3 p_proj = {p_hom.x * p_w, p_hom.y * p_w, p_hom.z * p_w}; // If 3D covariance matrix is precomputed, use it, otherwise compute // from scaling and rotation parameters. const float *cov3D; if (cov3D_precomp != nullptr) { cov3D = cov3D_precomp + idx * 6; } else { computeCov3D(scales[idx], scale_modifier, rotations[idx], cov3Ds + idx * 6); cov3D = cov3Ds + idx * 6; } // Compute 2D screen-space covariance matrix float3 cov = computeCov2D(p_orig, focal_x, focal_y, tan_fovx, tan_fovy, cov3D, viewmatrix); // Invert covariance (EWA algorithm) float det = (cov.x * cov.z - cov.y * cov.y); if (det == 0.0f) return; float det_inv = 1.f / det; float3 conic = {cov.z * det_inv, -cov.y * det_inv, cov.x * det_inv}; // Compute extent in screen space (by finding eigenvalues of // 2D covariance matrix). Use extent to compute a bounding rectangle // of screen-space tiles that this Gaussian overlaps with. Quit if // rectangle covers 0 tiles. float mid = 0.5f * (cov.x + cov.z); float lambda1 = mid + sqrt(max(0.1f, mid * mid - det)); float lambda2 = mid - sqrt(max(0.1f, mid * mid - det)); float my_radius = ceil(3.f * sqrt(max(lambda1, lambda2))); float2 point_image = {ndc2Pix(p_proj.x, W), ndc2Pix(p_proj.y, H)}; uint2 rect_min, rect_max; getRect(point_image, my_radius, rect_min, rect_max, grid); if ((rect_max.x - rect_min.x) * (rect_max.y - rect_min.y) == 0) return; // If colors have been precomputed, use them, otherwise convert // spherical harmonics coefficients to RGB color. if (colors_precomp == nullptr) { glm::vec3 result = computeColorFromSH(idx, D, M, (glm::vec3 *)orig_points, *cam_pos, shs, clamped); rgb[idx * C + 0] = result.x; rgb[idx * C + 1] = result.y; rgb[idx * C + 2] = result.z; } // if (opacities[idx] > 0.9 && point_image.x > 0 && point_image.x < 1264 && point_image.y > 0 && point_image.y < 832) { // glm::vec4 q = rotations[idx]; // glm::vec3 cp = *cam_pos; // printf("q(wxyz) %lf %lf %lf %lf, scale %lf %lf %lf, mean3d %lf %lf %lf, c %lf %lf %lf\n viewmatrix %lf %lf %lf %lf, %lf %lf %lf %lf, %lf %lf %lf %lf, %lf %lf %lf %lf\n", // q.x, q.y, q.z, q.w, scales[idx].x, scales[idx].y, scales[idx].z, // p_orig.x, p_orig.y, p_orig.z, cp.x, cp.y, cp.z, // viewmatrix[0],viewmatrix[4],viewmatrix[8],viewmatrix[12], // viewmatrix[1],viewmatrix[5],viewmatrix[9],viewmatrix[13], // viewmatrix[2],viewmatrix[6],viewmatrix[10],viewmatrix[14], // viewmatrix[3],viewmatrix[7],viewmatrix[11],viewmatrix[15]); // } // Store some useful helper data for the next steps. depths[idx] = p_view.z; radii[idx] = my_radius; points_xy_image[idx] = point_image; // Inverse 2D covariance and opacity neatly pack into one float4 conic_opacity[idx] = {conic.x, conic.y, conic.z, opacities[idx]}; tiles_touched[idx] = (rect_max.y - rect_min.y) * (rect_max.x - rect_min.x); } // Main rasterization method. Collaboratively works on one tile per // block, each thread treats one pixel. Alternates between fetching // and rasterizing data. template __global__ void __launch_bounds__(BLOCK_X *BLOCK_Y) renderCUDA( const uint2 *__restrict__ ranges, const uint32_t *__restrict__ point_list, int W, int H, const float focal_x, const float focal_y, const float cx, const float cy, const float *__restrict__ viewmatrix, const float *__restrict__ cam_pos, const float2 *__restrict__ points_xy_image, const float *__restrict__ features, const float *__restrict__ language_feature, const float *__restrict__ language_feature_instance, const float *__restrict__ all_map, const float4 *__restrict__ conic_opacity, float *__restrict__ final_T, uint32_t *__restrict__ n_contrib, const float *__restrict__ bg_color, float *__restrict__ out_color, float *__restrict__ out_language_feature, float *__restrict__ out_language_feature_instance, int *__restrict__ out_observe, float *__restrict__ out_all_map, float *__restrict__ out_plane_depth, const bool render_geo, bool include_feature) { // Identify current tile and associated min/max pixel range. auto block = cg::this_thread_block(); const uint32_t horizontal_blocks = (W + BLOCK_X - 1) / BLOCK_X; const uint2 pix_min = {block.group_index().x * BLOCK_X, block.group_index().y * BLOCK_Y}; const uint2 pix_max = {min(pix_min.x + BLOCK_X, W), min(pix_min.y + BLOCK_Y, H)}; const uint2 pix = {pix_min.x + block.thread_index().x, pix_min.y + block.thread_index().y}; const uint32_t pix_id = W * pix.y + pix.x; const float2 pixf = {(float)pix.x, (float)pix.y}; const float2 ray = {(pixf.x - cx) / focal_x, (pixf.y - cy) / focal_y}; // Check if this thread is associated with a valid pixel or outside. bool inside = pix.x < W && pix.y < H; // Done threads can help with fetching, but don't rasterize bool done = !inside; // Load start/end range of IDs to process in bit sorted list. uint2 range = ranges[block.group_index().y * horizontal_blocks + block.group_index().x]; const int rounds = ((range.y - range.x + BLOCK_SIZE - 1) / BLOCK_SIZE); int toDo = range.y - range.x; // Allocate storage for batches of collectively fetched data. __shared__ int collected_id[BLOCK_SIZE]; __shared__ float2 collected_xy[BLOCK_SIZE]; __shared__ float4 collected_conic_opacity[BLOCK_SIZE]; // Initialize helper variables float T = 1.0f; uint32_t contributor = 0; uint32_t last_contributor = 0; float C[CHANNELS] = {0}; float F[CHANNELS_language_feature] = {0}; float F_ins[CHANNELS_instance_feature] = {0}; float All_map[ALL_MAP] = {0}; // Iterate over batches until all done or range is complete for (int i = 0; i < rounds; i++, toDo -= BLOCK_SIZE) { // End if entire block votes that it is done rasterizing int num_done = __syncthreads_count(done); if (num_done == BLOCK_SIZE) break; // Collectively fetch per-Gaussian data from global to shared int progress = i * BLOCK_SIZE + block.thread_rank(); if (range.x + progress < range.y) { int coll_id = point_list[range.x + progress]; collected_id[block.thread_rank()] = coll_id; collected_xy[block.thread_rank()] = points_xy_image[coll_id]; collected_conic_opacity[block.thread_rank()] = conic_opacity[coll_id]; } block.sync(); // Iterate over current batch for (int j = 0; !done && j < min(BLOCK_SIZE, toDo); j++) { // Keep track of current position in range contributor++; // Resample using conic matrix (cf. "Surface // Splatting" by Zwicker et al., 2001) float2 xy = collected_xy[j]; float2 d = {xy.x - pixf.x, xy.y - pixf.y}; float4 con_o = collected_conic_opacity[j]; float power = -0.5f * (con_o.x * d.x * d.x + con_o.z * d.y * d.y) - con_o.y * d.x * d.y; if (power > 0.0f) continue; // Eq. (2) from 3D Gaussian splatting paper. // Obtain alpha by multiplying with Gaussian opacity // and its exponential falloff from mean. // Avoid numerical instabilities (see paper appendix). float alpha = min(0.99f, con_o.w * exp(power)); if (alpha < 1.0f / 255.0f) continue; float test_T = T * (1 - alpha); if (test_T < 0.0001f) { done = true; continue; } // Eq. (3) from 3D Gaussian splatting paper. for (int ch = 0; ch < CHANNELS; ch++) C[ch] += features[collected_id[j] * CHANNELS + ch] * alpha * T; if (include_feature) { for (int ch = 0; ch < CHANNELS_language_feature; ch++) F[ch] += language_feature[collected_id[j] * CHANNELS_language_feature + ch] * alpha * T; for (int ch = 0; ch < CHANNELS_instance_feature; ch++) F_ins[ch] += language_feature_instance[collected_id[j] * CHANNELS_instance_feature + ch] * alpha * T; } if (render_geo) { for (int ch = 0; ch < ALL_MAP; ch++) All_map[ch] += all_map[collected_id[j] * ALL_MAP + ch] * alpha * T; } if (T > 0.5) { atomicAdd(&(out_observe[collected_id[j]]), 1); } T = test_T; // Keep track of last range entry to update this // pixel. last_contributor = contributor; } } // All threads that treat valid pixel write out their final // rendering data to the frame and auxiliary buffers. if (inside) { final_T[pix_id] = T; n_contrib[pix_id] = last_contributor; for (int ch = 0; ch < CHANNELS; ch++) out_color[ch * H * W + pix_id] = C[ch] + T * bg_color[ch]; if (include_feature) { for (int ch = 0; ch < CHANNELS_language_feature; ch++) out_language_feature[ch * H * W + pix_id] = F[ch]; // bg_color ??? for (int ch = 0; ch < CHANNELS_instance_feature; ch++) out_language_feature_instance[ch * H * W + pix_id] = F_ins[ch]; } if (render_geo) { for (int ch = 0; ch < ALL_MAP; ch++) out_all_map[ch * H * W + pix_id] = All_map[ch]; out_plane_depth[pix_id] = All_map[4] / -(All_map[0] * ray.x + All_map[1] * ray.y + All_map[2] + 1.0e-8); } } } void FORWARD::render( const dim3 grid, dim3 block, const uint2 *ranges, const uint32_t *point_list, int W, int H, const float focal_x, const float focal_y, const float cx, const float cy, const float *viewmatrix, const float *cam_pos, const float2 *means2D, const float *colors, const float *language_feature, const float *language_feature_instance, const float *all_map, const float4 *conic_opacity, float *final_T, uint32_t *n_contrib, const float *bg_color, float *out_color, float *out_language_feature, float *out_language_feature_instance, int *out_observe, float *out_all_map, float *out_plane_depth, const bool render_geo, bool include_feature) { renderCUDA<<>>( ranges, point_list, W, H, focal_x, focal_y, cx, cy, viewmatrix, cam_pos, means2D, colors, language_feature, language_feature_instance, all_map, conic_opacity, final_T, n_contrib, bg_color, out_color, out_language_feature, out_language_feature_instance, out_observe, out_all_map, out_plane_depth, render_geo, include_feature); } void FORWARD::preprocess(int P, int D, int M, const float *means3D, const glm::vec3 *scales, const float scale_modifier, const glm::vec4 *rotations, const float *opacities, const float *shs, bool *clamped, const float *cov3D_precomp, const float *colors_precomp, const float *viewmatrix, const float *projmatrix, const glm::vec3 *cam_pos, const int W, int H, const float focal_x, float focal_y, const float tan_fovx, float tan_fovy, int *radii, float2 *means2D, float *depths, float *cov3Ds, float *rgb, float4 *conic_opacity, const dim3 grid, uint32_t *tiles_touched, bool prefiltered) { preprocessCUDA<<<(P + 255) / 256, 256>>>( P, D, M, means3D, scales, scale_modifier, rotations, opacities, shs, clamped, cov3D_precomp, colors_precomp, viewmatrix, projmatrix, cam_pos, W, H, tan_fovx, tan_fovy, focal_x, focal_y, radii, means2D, depths, cov3Ds, rgb, conic_opacity, grid, tiles_touched, prefiltered); }