# # Copyright (C) 2023, Inria # GRAPHDECO research group, https://team.inria.fr/graphdeco # All rights reserved. # # This software is free for non-commercial, research and evaluation use # under the terms of the LICENSE.md file. # # For inquiries contact george.drettakis@inria.fr # import sys import numpy as np from field_construction.scene.cameras import Camera from field_construction.utils.graphics_utils import fov2focal WARNED = False def loadCam(args, id, cam_info, resolution_scale): orig_w, orig_h = cam_info.width, cam_info.height if args.resolution in [1, 2, 4, 8]: resolution = round(orig_w/(resolution_scale * args.resolution)), round(orig_h/(resolution_scale * args.resolution)) else: # should be a type that converts to float if args.resolution == -1: if orig_h > 1080: global WARNED if not WARNED: print("[ INFO ] Encountered quite large input images (>1080P), rescaling to 1080P.\n " "If this is not desired, please explicitly specify '--resolution/-r' as 1") WARNED = True global_down = orig_h / 1080 else: global_down = 1 else: global_down = orig_w / args.resolution scale = float(global_down) * float(resolution_scale) resolution = (int(orig_w / scale), int(orig_h / scale)) sys.stdout.write('\r') sys.stdout.write("load camera {}".format(id)) sys.stdout.write('\r') sys.stdout.flush() return Camera(colmap_id=cam_info.uid, R=cam_info.R, T=cam_info.T, FoVx=cam_info.FovX, FoVy=cam_info.FovY, image_width=resolution[0], image_height=resolution[1], image_path=cam_info.image_path, image_name=cam_info.image_name, uid=cam_info.global_id, preload_img=args.preload_img, ncc_scale=args.ncc_scale, data_device=args.data_device) def cameraList_from_camInfos(cam_infos, resolution_scale, args): camera_list = [] for id, c in enumerate(cam_infos): camera_list.append(loadCam(args, id, c, resolution_scale)) return camera_list def camera_to_JSON(id, camera : Camera): Rt = np.zeros((4, 4)) Rt[:3, :3] = camera.R.transpose() Rt[:3, 3] = camera.T Rt[3, 3] = 1.0 W2C = np.linalg.inv(Rt) pos = W2C[:3, 3] rot = W2C[:3, :3] serializable_array_2d = [x.tolist() for x in rot] camera_entry = { 'id' : id, 'img_name' : camera.image_name, 'width' : camera.width, 'height' : camera.height, 'position': pos.tolist(), 'rotation': serializable_array_2d, 'fy' : fov2focal(camera.FovY, camera.height), 'fx' : fov2focal(camera.FovX, camera.width) } return camera_entry def gen_virtul_cam(cam, trans_noise=1.0, deg_noise=15.0, device="cuda"): Rt = np.zeros((4, 4)) Rt[:3, :3] = cam.R.transpose() Rt[:3, 3] = cam.T Rt[3, 3] = 1.0 C2W = np.linalg.inv(Rt) translation_perturbation = np.random.uniform(-trans_noise, trans_noise, 3) rotation_perturbation = np.random.uniform(-deg_noise, deg_noise, 3) rx, ry, rz = np.deg2rad(rotation_perturbation) Rx = np.array([[1, 0, 0], [0, np.cos(rx), -np.sin(rx)], [0, np.sin(rx), np.cos(rx)]]) Ry = np.array([[np.cos(ry), 0, np.sin(ry)], [0, 1, 0], [-np.sin(ry), 0, np.cos(ry)]]) Rz = np.array([[np.cos(rz), -np.sin(rz), 0], [np.sin(rz), np.cos(rz), 0], [0, 0, 1]]) R_perturbation = Rz @ Ry @ Rx C2W[:3, :3] = C2W[:3, :3] @ R_perturbation C2W[:3, 3] = C2W[:3, 3] + translation_perturbation Rt = np.linalg.inv(C2W) virtul_cam = Camera(100000, Rt[:3, :3].transpose(), Rt[:3, 3], cam.FoVx, cam.FoVy, cam.image_width, cam.image_height, cam.image_path, cam.image_name, 100000, trans=np.array([0.0, 0.0, 0.0]), scale=1.0, preload_img=False, data_device=device) return virtul_cam