import os from argparse import ArgumentParser import torch import torchvision.io as io from PIL import Image from tqdm import tqdm def parse_args(): parser = ArgumentParser() parser.add_argument("--base_path", type=str) parser.add_argument("--video_process", action="store_true") return parser.parse_args() def main(): torch.manual_seed(42) args = parse_args() predictor = torch.hub.load( "Stable-X/StableNormal", "StableNormal", trust_repo=True, local_cache_dir="/home/lff/bigdata1/cjw/model_cache" ) if not args.video_process: base_path = args.base_path img_names = os.listdir(os.path.join(base_path, "rgb")) for img_name in img_names: img = Image.open(os.path.join(base_path, "rgb", img_name)) normal_img = predictor(img) normal_path = os.path.join(base_path, "normal") os.makedirs(normal_path, exist_ok=True) normal_img.save(os.path.join(normal_path, img_name)) else: video_tensor, _, _ = io.read_video(args.base_path, pts_unit="sec") for frame_ind, frame in enumerate(tqdm(video_tensor)): normal_frame = predictor(Image.fromarray(frame.numpy())) normal_frame.save(os.path.join(args.normal_save_path, f"{frame_ind:04d}.png")) if __name__ == "__main__": main()