File size: 83,060 Bytes
64bea29
 
 
 
 
 
 
 
6415ee8
 
64bea29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c90fc65
 
 
 
64bea29
 
 
 
73eebb3
 
 
 
 
 
 
 
 
 
 
 
64bea29
6415ee8
64bea29
 
 
 
 
 
73eebb3
64bea29
 
 
 
 
 
 
 
 
73eebb3
64bea29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73eebb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c90fc65
 
64bea29
c90fc65
 
64bea29
73eebb3
c90fc65
 
 
 
 
 
64bea29
 
c90fc65
64bea29
c90fc65
 
 
 
 
 
 
 
 
 
 
 
 
64bea29
 
 
 
 
6415ee8
64bea29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73eebb3
 
 
 
 
 
 
ae55ef4
 
 
 
 
64bea29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73eebb3
 
 
 
 
 
 
 
64bea29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73eebb3
 
 
 
64bea29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73eebb3
64bea29
 
73eebb3
64bea29
73eebb3
 
 
 
 
 
64bea29
 
 
 
 
 
 
 
 
73eebb3
 
64bea29
 
 
 
 
 
 
6415ee8
 
 
c90fc65
6415ee8
 
 
 
 
64bea29
 
 
6415ee8
73eebb3
 
64bea29
 
 
73eebb3
 
 
 
 
c90fc65
 
 
 
 
6415ee8
 
73eebb3
c509d9d
 
6415ee8
 
 
 
 
 
 
 
 
 
c509d9d
 
 
 
64bea29
 
 
 
6415ee8
 
64bea29
c90fc65
73eebb3
 
6415ee8
 
73eebb3
6415ee8
 
 
 
 
 
c90fc65
73eebb3
 
 
64bea29
6415ee8
 
64bea29
 
 
73eebb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c90fc65
 
 
 
 
 
 
73eebb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c90fc65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6415ee8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73eebb3
c509d9d
64bea29
 
 
 
73eebb3
 
 
 
 
 
 
64bea29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73eebb3
 
 
64bea29
 
 
 
 
 
 
 
 
 
 
 
 
 
c90fc65
 
64bea29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6415ee8
73eebb3
64bea29
 
 
6415ee8
73eebb3
64bea29
 
73eebb3
 
64bea29
 
 
73eebb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64bea29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73eebb3
64bea29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73eebb3
64bea29
6415ee8
64bea29
 
73eebb3
64bea29
73eebb3
64bea29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73eebb3
64bea29
 
 
 
 
 
 
 
 
 
73eebb3
6415ee8
64bea29
 
 
 
 
 
 
 
73eebb3
 
 
64bea29
 
73eebb3
64bea29
 
 
 
 
 
 
 
73eebb3
64bea29
 
 
 
 
 
c90fc65
 
64bea29
235fd3c
64bea29
 
 
 
 
 
 
 
 
 
 
 
 
 
73eebb3
c90fc65
64bea29
 
 
 
 
 
 
 
 
 
c90fc65
 
73eebb3
c90fc65
 
 
 
 
 
 
 
 
 
64bea29
ae55ef4
64bea29
78b5e61
 
 
64bea29
 
78b5e61
64bea29
78b5e61
 
64bea29
 
 
 
 
 
78b5e61
 
 
 
 
 
 
 
64bea29
78b5e61
 
 
64bea29
 
 
 
 
 
 
78b5e61
 
64bea29
 
78b5e61
 
 
 
 
 
 
 
 
 
 
 
64bea29
 
78b5e61
 
64bea29
78b5e61
 
 
 
 
64bea29
78b5e61
 
64bea29
78b5e61
 
 
 
 
 
 
 
 
 
64bea29
73eebb3
6415ee8
 
 
 
 
3d61f7a
6415ee8
 
c509d9d
6415ee8
c509d9d
6415ee8
 
 
73eebb3
c90fc65
 
73eebb3
6415ee8
64bea29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c90fc65
73eebb3
 
c90fc65
 
 
 
 
73eebb3
c90fc65
 
 
 
 
 
 
 
 
73eebb3
c90fc65
 
 
 
 
 
 
 
 
 
 
 
73eebb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c90fc65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73eebb3
 
 
 
 
c90fc65
 
 
73eebb3
c90fc65
73eebb3
 
c90fc65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73eebb3
c90fc65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73eebb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c90fc65
 
64bea29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73eebb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64bea29
 
73eebb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64bea29
 
73eebb3
64bea29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c90fc65
64bea29
 
c90fc65
64bea29
 
 
6415ee8
64bea29
 
 
 
 
 
 
c90fc65
 
 
 
 
 
 
64bea29
c90fc65
 
73eebb3
 
64bea29
 
 
c90fc65
64bea29
 
 
 
 
 
 
 
73eebb3
 
64bea29
 
 
 
 
 
 
 
 
 
 
 
 
 
c90fc65
73eebb3
 
 
 
64bea29
73eebb3
64bea29
 
 
 
 
 
 
 
 
78b5e61
 
 
64bea29
 
c90fc65
73eebb3
 
 
64bea29
 
78b5e61
235fd3c
64bea29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
235fd3c
78b5e61
 
 
64bea29
c90fc65
73eebb3
 
78b5e61
 
64bea29
 
 
c90fc65
78b5e61
73eebb3
 
 
 
 
 
 
 
 
 
 
 
78b5e61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73eebb3
78b5e61
 
c90fc65
78b5e61
c90fc65
78b5e61
 
 
 
 
73eebb3
 
 
 
 
 
78b5e61
 
 
 
 
 
c90fc65
78b5e61
64bea29
73eebb3
 
 
 
 
 
 
 
64bea29
78b5e61
73eebb3
 
 
 
64bea29
73eebb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c90fc65
 
 
 
 
 
73eebb3
 
c90fc65
 
73eebb3
 
753be88
78b5e61
 
c90fc65
78b5e61
 
64bea29
73eebb3
 
 
 
 
 
78b5e61
73eebb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64bea29
235fd3c
 
78b5e61
 
 
 
 
235fd3c
78b5e61
 
 
235fd3c
78b5e61
 
 
 
 
 
 
 
 
 
 
753be88
78b5e61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64bea29
 
235fd3c
c90fc65
235fd3c
 
73eebb3
 
 
 
64bea29
73eebb3
 
 
 
64bea29
235fd3c
 
 
 
64bea29
 
235fd3c
 
 
 
 
 
 
64bea29
 
235fd3c
78b5e61
235fd3c
 
 
c90fc65
64bea29
 
 
235fd3c
64bea29
 
 
 
 
 
73eebb3
64bea29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c90fc65
 
 
73eebb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c90fc65
64bea29
 
 
 
 
 
 
 
c90fc65
73eebb3
 
64bea29
78b5e61
 
c90fc65
73eebb3
64bea29
 
 
 
 
c90fc65
73eebb3
 
64bea29
 
78b5e61
73eebb3
64bea29
 
 
 
 
 
 
 
 
78b5e61
64bea29
 
 
 
 
 
78b5e61
 
64bea29
 
 
c90fc65
 
 
 
73eebb3
c90fc65
 
 
73eebb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c90fc65
 
 
 
 
 
 
 
 
 
 
73eebb3
c90fc65
 
 
 
 
 
73eebb3
c90fc65
 
 
 
 
 
73eebb3
c90fc65
 
 
73eebb3
 
 
 
 
 
 
64bea29
 
 
 
 
 
 
c90fc65
73eebb3
 
64bea29
 
 
 
 
73eebb3
64bea29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae55ef4
 
64bea29
 
ae55ef4
c90fc65
64bea29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
import asyncio
import base64
import json
from pathlib import Path
import os
import numpy as np
import openai
from dotenv import load_dotenv
from fastapi import FastAPI, Request
from fastapi.responses import HTMLResponse, StreamingResponse
from fastrtc import (
    AdditionalOutputs,
    AsyncStreamHandler,
    Stream,
    get_twilio_turn_credentials,
    wait_for_item,
)
from gradio.utils import get_space
from openai.types.beta.realtime import ResponseAudioTranscriptDoneEvent
import httpx
from typing import Optional, List, Dict
import gradio as gr
import io
from scipy import signal
import wave
import aiosqlite
from langdetect import detect, LangDetectException
from datetime import datetime
import uuid

load_dotenv()

SAMPLE_RATE = 24000

# Use Persistent Storage path for Hugging Face Space
# In HF Spaces, persistent storage is at /data
if os.path.exists("/data"):
    PERSISTENT_DIR = "/data"
else:
    PERSISTENT_DIR = "./data"
    
os.makedirs(PERSISTENT_DIR, exist_ok=True)
DB_PATH = os.path.join(PERSISTENT_DIR, "personal_assistant.db")
print(f"Using persistent directory: {PERSISTENT_DIR}")
print(f"Database path: {DB_PATH}")

# HTML content embedded as a string
HTML_CONTENT = """<!DOCTYPE html>
<html lang="ko">

<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Personal AI Assistant</title>
    <style>
        :root {
            --primary-color: #6f42c1;
            --secondary-color: #563d7c;
            --dark-bg: #121212;
            --card-bg: #1e1e1e;
            --text-color: #f8f9fa;
            --border-color: #333;
            --hover-color: #8a5cf6;
            --memory-color: #4a9eff;
        }
        body {
            font-family: "SF Pro Display", -apple-system, BlinkMacSystemFont, sans-serif;
            background-color: var(--dark-bg);
            color: var(--text-color);
            margin: 0;
            padding: 0;
            height: 100vh;
            display: flex;
            flex-direction: column;
            overflow: hidden;
        }
        .container {
            max-width: 1400px;
            margin: 0 auto;
            padding: 20px;
            flex-grow: 1;
            display: flex;
            flex-direction: column;
            width: 100%;
            height: 100vh;
            box-sizing: border-box;
            overflow: hidden;
        }
        .header {
            text-align: center;
            padding: 15px 0;
            border-bottom: 1px solid var(--border-color);
            margin-bottom: 20px;
            flex-shrink: 0;
            background-color: var(--card-bg);
        }
        .main-content {
            display: flex;
            gap: 20px;
            flex-grow: 1;
            min-height: 0;
            overflow: hidden;
        }
        .sidebar {
            width: 350px;
            flex-shrink: 0;
            display: flex;
            flex-direction: column;
            gap: 20px;
            overflow-y: auto;
            max-height: calc(100vh - 120px);
        }
        .chat-section {
            flex-grow: 1;
            display: flex;
            flex-direction: column;
            min-width: 0;
        }
        .logo {
            display: flex;
            align-items: center;
            justify-content: center;
            gap: 10px;
        }
        .logo h1 {
            margin: 0;
            background: linear-gradient(135deg, var(--primary-color), #a78bfa);
            -webkit-background-clip: text;
            background-clip: text;
            color: transparent;
            font-size: 32px;
            letter-spacing: 1px;
        }
        /* Settings section */
        .settings-section {
            background-color: var(--card-bg);
            border-radius: 12px;
            padding: 20px;
            border: 1px solid var(--border-color);
            overflow-y: auto;
        }
        .settings-grid {
            display: flex;
            flex-direction: column;
            gap: 15px;
            margin-bottom: 15px;
        }
        .setting-item {
            display: flex;
            align-items: center;
            justify-content: space-between;
            gap: 10px;
        }
        .setting-label {
            font-size: 14px;
            color: #aaa;
            min-width: 60px;
        }
        /* Toggle switch */
        .toggle-switch {
            position: relative;
            width: 50px;
            height: 26px;
            background-color: #ccc;
            border-radius: 13px;
            cursor: pointer;
            transition: background-color 0.3s;
        }
        .toggle-switch.active {
            background-color: var(--primary-color);
        }
        .toggle-slider {
            position: absolute;
            top: 3px;
            left: 3px;
            width: 20px;
            height: 20px;
            background-color: white;
            border-radius: 50%;
            transition: transform 0.3s;
        }
        .toggle-switch.active .toggle-slider {
            transform: translateX(24px);
        }
        /* Memory section */
        .memory-section {
            background-color: var(--card-bg);
            border-radius: 12px;
            padding: 20px;
            border: 1px solid var(--border-color);
            max-height: 300px;
            overflow-y: auto;
        }
        .memory-item {
            padding: 10px;
            margin-bottom: 10px;
            background: linear-gradient(135deg, rgba(74, 158, 255, 0.1), rgba(111, 66, 193, 0.1));
            border-radius: 6px;
            border-left: 3px solid var(--memory-color);
        }
        .memory-category {
            font-size: 12px;
            color: var(--memory-color);
            font-weight: bold;
            text-transform: uppercase;
            margin-bottom: 5px;
        }
        .memory-content {
            font-size: 14px;
            color: var(--text-color);
        }
        /* History section */
        .history-section {
            background-color: var(--card-bg);
            border-radius: 12px;
            padding: 20px;
            border: 1px solid var(--border-color);
            max-height: 200px;
            overflow-y: auto;
        }
        .history-item {
            padding: 10px;
            margin-bottom: 10px;
            background-color: var(--dark-bg);
            border-radius: 6px;
            cursor: pointer;
            transition: background-color 0.2s;
        }
        .history-item:hover {
            background-color: var(--hover-color);
        }
        .history-date {
            font-size: 12px;
            color: #888;
        }
        .history-preview {
            font-size: 14px;
            margin-top: 5px;
            overflow: hidden;
            text-overflow: ellipsis;
            white-space: nowrap;
        }
        /* Text inputs */
        .text-input-section {
            margin-top: 15px;
        }
        input[type="text"], textarea {
            width: 100%;
            background-color: var(--dark-bg);
            color: var(--text-color);
            border: 1px solid var(--border-color);
            padding: 10px;
            border-radius: 6px;
            font-size: 14px;
            box-sizing: border-box;
            margin-top: 5px;
        }
        input[type="text"]:focus, textarea:focus {
            outline: none;
            border-color: var(--primary-color);
        }
        textarea {
            resize: vertical;
            min-height: 80px;
        }
        .chat-container {
            border-radius: 12px;
            background-color: var(--card-bg);
            box-shadow: 0 8px 32px rgba(0, 0, 0, 0.2);
            padding: 20px;
            flex-grow: 1;
            display: flex;
            flex-direction: column;
            border: 1px solid var(--border-color);
            overflow: hidden;
            min-height: 0;
            height: 100%;
        }
        .chat-messages {
            flex-grow: 1;
            overflow-y: auto;
            padding: 15px;
            scrollbar-width: thin;
            scrollbar-color: var(--primary-color) var(--card-bg);
            min-height: 0;
            max-height: calc(100vh - 250px);
        }
        .chat-messages::-webkit-scrollbar {
            width: 6px;
        }
        .chat-messages::-webkit-scrollbar-thumb {
            background-color: var(--primary-color);
            border-radius: 6px;
        }
        .message {
            margin-bottom: 15px;
            padding: 12px 16px;
            border-radius: 8px;
            font-size: 15px;
            line-height: 1.5;
            position: relative;
            max-width: 85%;
            animation: fade-in 0.3s ease-out;
            word-wrap: break-word;
        }
        @keyframes fade-in {
            from {
                opacity: 0;
                transform: translateY(10px);
            }
            to {
                opacity: 1;
                transform: translateY(0);
            }
        }
        .message.user {
            background: linear-gradient(135deg, #2c3e50, #34495e);
            margin-left: auto;
            border-bottom-right-radius: 2px;
        }
        .message.assistant {
            background: linear-gradient(135deg, var(--secondary-color), var(--primary-color));
            margin-right: auto;
            border-bottom-left-radius: 2px;
        }
        .message.search-result {
            background: linear-gradient(135deg, #1a5a3e, #2e7d32);
            font-size: 14px;
            padding: 10px;
            margin-bottom: 10px;
        }
        .message.memory-update {
            background: linear-gradient(135deg, rgba(74, 158, 255, 0.2), rgba(111, 66, 193, 0.2));
            font-size: 13px;
            padding: 8px 12px;
            margin-bottom: 10px;
            border-left: 3px solid var(--memory-color);
        }
        .language-info {
            font-size: 12px;
            color: #888;
            margin-left: 5px;
        }
        .controls {
            text-align: center;
            margin-top: auto;
            display: flex;
            justify-content: center;
            gap: 10px;
            flex-shrink: 0;
            padding-top: 20px;
        }
        /* Responsive design */
        @media (max-width: 1024px) {
            .sidebar {
                width: 300px;
            }
        }
        @media (max-width: 768px) {
            .main-content {
                flex-direction: column;
            }
            .sidebar {
                width: 100%;
                margin-bottom: 20px;
            }
            .chat-section {
                height: 400px;
            }
        }
        button {
            background: linear-gradient(135deg, var(--primary-color), var(--secondary-color));
            color: white;
            border: none;
            padding: 14px 28px;
            font-family: inherit;
            font-size: 16px;
            cursor: pointer;
            transition: all 0.3s;
            text-transform: uppercase;
            letter-spacing: 1px;
            border-radius: 50px;
            display: flex;
            align-items: center;
            justify-content: center;
            gap: 10px;
            box-shadow: 0 4px 10px rgba(111, 66, 193, 0.3);
        }
        button:hover {
            transform: translateY(-2px);
            box-shadow: 0 6px 15px rgba(111, 66, 193, 0.5);
            background: linear-gradient(135deg, var(--hover-color), var(--primary-color));
        }
        button:active {
            transform: translateY(1px);
        }
        #send-button {
            background: linear-gradient(135deg, #2ecc71, #27ae60);
            padding: 10px 20px;
            font-size: 14px;
            flex-shrink: 0;
        }
        #send-button:hover {
            background: linear-gradient(135deg, #27ae60, #229954);
        }
        #end-session-button {
            background: linear-gradient(135deg, #4a9eff, #3a7ed8);
            padding: 8px 16px;
            font-size: 13px;
        }
        #end-session-button:hover {
            background: linear-gradient(135deg, #3a7ed8, #2a5eb8);
        }
        #audio-output {
            display: none;
        }
        .icon-with-spinner {
            display: flex;
            align-items: center;
            justify-content: center;
            gap: 12px;
            min-width: 180px;
        }
        .spinner {
            width: 20px;
            height: 20px;
            border: 2px solid #ffffff;
            border-top-color: transparent;
            border-radius: 50%;
            animation: spin 1s linear infinite;
            flex-shrink: 0;
        }
        @keyframes spin {
            to {
                transform: rotate(360deg);
            }
        }
        .audio-visualizer {
            display: flex;
            align-items: center;
            justify-content: center;
            gap: 5px;
            min-width: 80px;
            height: 25px;
        }
        .visualizer-bar {
            width: 4px;
            height: 100%;
            background-color: rgba(255, 255, 255, 0.7);
            border-radius: 2px;
            transform-origin: bottom;
            transform: scaleY(0.1);
            transition: transform 0.1s ease;
        }
        .toast {
            position: fixed;
            top: 20px;
            left: 50%;
            transform: translateX(-50%);
            padding: 16px 24px;
            border-radius: 8px;
            font-size: 14px;
            z-index: 1000;
            display: none;
            box-shadow: 0 4px 12px rgba(0, 0, 0, 0.3);
        }
        .toast.error {
            background-color: #f44336;
            color: white;
        }
        .toast.warning {
            background-color: #ff9800;
            color: white;
        }
        .toast.success {
            background-color: #4caf50;
            color: white;
        }
        .status-indicator {
            display: inline-flex;
            align-items: center;
            margin-top: 10px;
            font-size: 14px;
            color: #aaa;
        }
        .status-dot {
            width: 8px;
            height: 8px;
            border-radius: 50%;
            margin-right: 8px;
        }
        .status-dot.connected {
            background-color: #4caf50;
        }
        .status-dot.disconnected {
            background-color: #f44336;
        }
        .status-dot.connecting {
            background-color: #ff9800;
            animation: pulse 1.5s infinite;
        }
        @keyframes pulse {
            0% {
                opacity: 0.6;
            }
            50% {
                opacity: 1;
            }
            100% {
                opacity: 0.6;
            }
        }
        .user-avatar {
            width: 40px;
            height: 40px;
            background: linear-gradient(135deg, var(--primary-color), var(--secondary-color));
            border-radius: 50%;
            display: flex;
            align-items: center;
            justify-content: center;
            font-size: 20px;
            font-weight: bold;
            color: white;
        }
    </style>
</head>

<body>
    <div id="error-toast" class="toast"></div>
    <div class="container">
        <div class="header">
            <div class="logo">
                <div class="user-avatar" id="user-avatar">๐Ÿ‘ค</div>
                <h1>Personal AI Assistant</h1>
            </div>
            <div class="status-indicator">
                <div id="status-dot" class="status-dot disconnected"></div>
                <span id="status-text">์—ฐ๊ฒฐ ๋Œ€๊ธฐ ์ค‘</span>
            </div>
        </div>
        
        <div class="main-content">
            <div class="sidebar">
                <div class="settings-section">
                    <h3 style="margin: 0 0 15px 0; color: var(--primary-color);">์„ค์ •</h3>
                    <div class="settings-grid">
                        <div class="setting-item">
                            <span class="setting-label">์›น ๊ฒ€์ƒ‰</span>
                            <div id="search-toggle" class="toggle-switch">
                                <div class="toggle-slider"></div>
                            </div>
                        </div>
                    </div>
                    <div class="text-input-section">
                        <label for="user-name" class="setting-label">์‚ฌ์šฉ์ž ์ด๋ฆ„:</label>
                        <input type="text" id="user-name" placeholder="์ด๋ฆ„์„ ์ž…๋ ฅํ•˜์„ธ์š”..." />
                    </div>
                </div>
                
                <div class="memory-section">
                    <h3 style="margin: 0 0 15px 0; color: var(--memory-color);">๊ธฐ์–ต๋œ ์ •๋ณด</h3>
                    <div id="memory-list"></div>
                </div>
                
                <div class="history-section">
                    <h3 style="margin: 0 0 15px 0; color: var(--primary-color);">๋Œ€ํ™” ๊ธฐ๋ก</h3>
                    <div id="history-list"></div>
                </div>
                
                <div class="controls">
                    <button id="start-button">๋Œ€ํ™” ์‹œ์ž‘</button>
                    <button id="end-session-button" style="display: none;">๊ธฐ์–ต ์—…๋ฐ์ดํŠธ</button>
                </div>
            </div>
            
            <div class="chat-section">
                <div class="chat-container">
                    <h3 style="margin: 0 0 15px 0; color: var(--primary-color);">๋Œ€ํ™”</h3>
                    <div class="chat-messages" id="chat-messages"></div>
                    <div class="text-input-section" style="margin-top: 10px;">
                        <div style="display: flex; gap: 10px;">
                            <input type="text" id="text-input" placeholder="ํ…์ŠคํŠธ ๋ฉ”์‹œ์ง€๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š”..." style="flex-grow: 1;" />
                            <button id="send-button" style="display: none;">์ „์†ก</button>
                        </div>
                    </div>
                </div>
            </div>
        </div>
    </div>
    <audio id="audio-output"></audio>

    <script>
        let peerConnection;
        let webrtc_id;
        let webSearchEnabled = false;
        let currentSessionId = null;
        let userName = localStorage.getItem('userName') || '';
        let userMemories = {};
        const audioOutput = document.getElementById('audio-output');
        const startButton = document.getElementById('start-button');
        const endSessionButton = document.getElementById('end-session-button');
        const sendButton = document.getElementById('send-button');
        const chatMessages = document.getElementById('chat-messages');
        const statusDot = document.getElementById('status-dot');
        const statusText = document.getElementById('status-text');
        const searchToggle = document.getElementById('search-toggle');
        const textInput = document.getElementById('text-input');
        const historyList = document.getElementById('history-list');
        const memoryList = document.getElementById('memory-list');
        const userNameInput = document.getElementById('user-name');
        const userAvatar = document.getElementById('user-avatar');
        let audioLevel = 0;
        let animationFrame;
        let audioContext, analyser, audioSource;
        let dataChannel = null;
        let isVoiceActive = false;
        
        // Initialize user name
        userNameInput.value = userName;
        if (userName) {
            userAvatar.textContent = userName.charAt(0).toUpperCase();
        }
        
        userNameInput.addEventListener('input', () => {
            userName = userNameInput.value;
            localStorage.setItem('userName', userName);
            if (userName) {
                userAvatar.textContent = userName.charAt(0).toUpperCase();
            } else {
                userAvatar.textContent = '๐Ÿ‘ค';
            }
        });
        
        // Start new session
        async function startNewSession() {
            const response = await fetch('/session/new', { method: 'POST' });
            const data = await response.json();
            currentSessionId = data.session_id;
            console.log('New session started:', currentSessionId);
            loadHistory();
            loadMemories();
        }
        
        // Load memories
        async function loadMemories() {
            try {
                const response = await fetch('/memory/all');
                const memories = await response.json();
                
                userMemories = {};
                memoryList.innerHTML = '';
                
                memories.forEach(memory => {
                    if (!userMemories[memory.category]) {
                        userMemories[memory.category] = [];
                    }
                    userMemories[memory.category].push(memory.content);
                    
                    const item = document.createElement('div');
                    item.className = 'memory-item';
                    item.innerHTML = `
                        <div class="memory-category">${memory.category}</div>
                        <div class="memory-content">${memory.content}</div>
                    `;
                    memoryList.appendChild(item);
                });
                
                console.log('Loaded memories:', userMemories);
            } catch (error) {
                console.error('Failed to load memories:', error);
            }
        }
        
        // End session and update memories
        async function endSession() {
            if (!currentSessionId) return;
            
            try {
                addMessage('memory-update', '๋Œ€ํ™” ๋‚ด์šฉ์„ ๋ถ„์„ํ•˜์—ฌ ๊ธฐ์–ต์„ ์—…๋ฐ์ดํŠธํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค...');
                
                const response = await fetch('/session/end', {
                    method: 'POST',
                    headers: { 'Content-Type': 'application/json' },
                    body: JSON.stringify({ session_id: currentSessionId })
                });
                
                const result = await response.json();
                if (result.status === 'ok') {
                    showToast('๊ธฐ์–ต์ด ์„ฑ๊ณต์ ์œผ๋กœ ์—…๋ฐ์ดํŠธ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.', 'success');
                    loadMemories();
                    startNewSession();
                }
            } catch (error) {
                console.error('Failed to end session:', error);
                showError('๊ธฐ์–ต ์—…๋ฐ์ดํŠธ ์ค‘ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค.');
            }
        }
        
        // Load conversation history
        async function loadHistory() {
            try {
                const response = await fetch('/history/recent');
                const conversations = await response.json();
                
                historyList.innerHTML = '';
                conversations.forEach(conv => {
                    const item = document.createElement('div');
                    item.className = 'history-item';
                    item.innerHTML = `
                        <div class="history-date">${new Date(conv.created_at).toLocaleString()}</div>
                        <div class="history-preview">${conv.summary || '๋Œ€ํ™” ์‹œ์ž‘'}</div>
                    `;
                    item.onclick = () => loadConversation(conv.id);
                    historyList.appendChild(item);
                });
            } catch (error) {
                console.error('Failed to load history:', error);
            }
        }
        
        // Load specific conversation
        async function loadConversation(sessionId) {
            try {
                const response = await fetch(`/history/${sessionId}`);
                const messages = await response.json();
                
                chatMessages.innerHTML = '';
                messages.forEach(msg => {
                    addMessage(msg.role, msg.content, false);
                });
            } catch (error) {
                console.error('Failed to load conversation:', error);
            }
        }
        
        // Web search toggle functionality
        searchToggle.addEventListener('click', () => {
            webSearchEnabled = !webSearchEnabled;
            searchToggle.classList.toggle('active', webSearchEnabled);
            console.log('Web search enabled:', webSearchEnabled);
        });
        
        // Text input handling
        textInput.addEventListener('keypress', (e) => {
            if (e.key === 'Enter' && !e.shiftKey) {
                e.preventDefault();
                sendTextMessage();
            }
        });
        
        sendButton.addEventListener('click', sendTextMessage);
        endSessionButton.addEventListener('click', endSession);
        
        async function sendTextMessage() {
            const message = textInput.value.trim();
            if (!message) return;
            
            // Check for stop words
            const stopWords = ["์ค‘๋‹จ", "๊ทธ๋งŒ", "์Šคํ†ฑ", "stop", "๋‹ฅ์ณ", "๋ฉˆ์ถฐ", "์ค‘์ง€"];
            if (stopWords.some(word => message.toLowerCase().includes(word))) {
                addMessage('assistant', '๋Œ€ํ™”๋ฅผ ์ค‘๋‹จํ•ฉ๋‹ˆ๋‹ค.');
                return;
            }
            
            // Add user message to chat
            addMessage('user', message);
            textInput.value = '';
            
            // Show sending indicator
            const typingIndicator = document.createElement('div');
            typingIndicator.classList.add('message', 'assistant');
            typingIndicator.textContent = '์ž…๋ ฅ ์ค‘...';
            typingIndicator.id = 'typing-indicator';
            chatMessages.appendChild(typingIndicator);
            chatMessages.scrollTop = chatMessages.scrollHeight;
            
            try {
                // Send to text chat endpoint
                const response = await fetch('/chat/text', {
                    method: 'POST',
                    headers: { 'Content-Type': 'application/json' },
                    body: JSON.stringify({
                        message: message,
                        web_search_enabled: webSearchEnabled,
                        session_id: currentSessionId,
                        user_name: userName,
                        memories: userMemories
                    })
                });
                
                const data = await response.json();
                
                // Remove typing indicator
                const indicator = document.getElementById('typing-indicator');
                if (indicator) indicator.remove();
                
                if (data.error) {
                    showError(data.error);
                } else {
                    // Add assistant response
                    let content = data.response;
                    if (data.detected_language) {
                        content += ` <span class="language-info">[${data.detected_language}]</span>`;
                    }
                    addMessage('assistant', content);
                }
            } catch (error) {
                console.error('Error sending text message:', error);
                const indicator = document.getElementById('typing-indicator');
                if (indicator) indicator.remove();
                showError('๋ฉ”์‹œ์ง€ ์ „์†ก ์ค‘ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค.');
            }
        }
        
        function updateStatus(state) {
            statusDot.className = 'status-dot ' + state;
            if (state === 'connected') {
                statusText.textContent = '์—ฐ๊ฒฐ๋จ';
                sendButton.style.display = 'block';
                endSessionButton.style.display = 'block';
                isVoiceActive = true;
            } else if (state === 'connecting') {
                statusText.textContent = '์—ฐ๊ฒฐ ์ค‘...';
                sendButton.style.display = 'none';
                endSessionButton.style.display = 'none';
            } else {
                statusText.textContent = '์—ฐ๊ฒฐ ๋Œ€๊ธฐ ์ค‘';
                sendButton.style.display = 'block';
                endSessionButton.style.display = 'block';
                isVoiceActive = false;
            }
        }
        
        function showToast(message, type = 'info') {
            const toast = document.getElementById('error-toast');
            toast.textContent = message;
            toast.className = `toast ${type}`;
            toast.style.display = 'block';
            setTimeout(() => {
                toast.style.display = 'none';
            }, 5000);
        }
        
        function showError(message) {
            showToast(message, 'error');
        }
        
        function updateButtonState() {
            const button = document.getElementById('start-button');
            if (peerConnection && (peerConnection.connectionState === 'connecting' || peerConnection.connectionState === 'new')) {
                button.innerHTML = `
                    <div class="icon-with-spinner">
                        <div class="spinner"></div>
                        <span>์—ฐ๊ฒฐ ์ค‘...</span>
                    </div>
                `;
                updateStatus('connecting');
            } else if (peerConnection && peerConnection.connectionState === 'connected') {
                button.innerHTML = `
                    <div class="icon-with-spinner">
                        <div class="audio-visualizer" id="audio-visualizer">
                            <div class="visualizer-bar"></div>
                            <div class="visualizer-bar"></div>
                            <div class="visualizer-bar"></div>
                            <div class="visualizer-bar"></div>
                            <div class="visualizer-bar"></div>
                        </div>
                        <span>๋Œ€ํ™” ์ข…๋ฃŒ</span>
                    </div>
                `;
                updateStatus('connected');
            } else {
                button.innerHTML = '๋Œ€ํ™” ์‹œ์ž‘';
                updateStatus('disconnected');
            }
        }
        
        function setupAudioVisualization(stream) {
            audioContext = new (window.AudioContext || window.webkitAudioContext)();
            analyser = audioContext.createAnalyser();
            audioSource = audioContext.createMediaStreamSource(stream);
            audioSource.connect(analyser);
            analyser.fftSize = 256;
            const bufferLength = analyser.frequencyBinCount;
            const dataArray = new Uint8Array(bufferLength);
            
            const visualizerBars = document.querySelectorAll('.visualizer-bar');
            const barCount = visualizerBars.length;
            
            function updateAudioLevel() {
                analyser.getByteFrequencyData(dataArray);
                
                for (let i = 0; i < barCount; i++) {
                    const start = Math.floor(i * (bufferLength / barCount));
                    const end = Math.floor((i + 1) * (bufferLength / barCount));
                    
                    let sum = 0;
                    for (let j = start; j < end; j++) {
                        sum += dataArray[j];
                    }
                    
                    const average = sum / (end - start) / 255;
                    const scaleY = 0.1 + average * 0.9;
                    visualizerBars[i].style.transform = `scaleY(${scaleY})`;
                }
                
                animationFrame = requestAnimationFrame(updateAudioLevel);
            }
            
            updateAudioLevel();
        }
        
        async function setupWebRTC() {
            const config = __RTC_CONFIGURATION__;
            peerConnection = new RTCPeerConnection(config);
            const timeoutId = setTimeout(() => {
                showToast("์—ฐ๊ฒฐ์ด ํ‰์†Œ๋ณด๋‹ค ์˜ค๋ž˜ ๊ฑธ๋ฆฌ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. VPN์„ ์‚ฌ์šฉ ์ค‘์ด์‹ ๊ฐ€์š”?", 'warning');
            }, 5000);
            
            try {
                const stream = await navigator.mediaDevices.getUserMedia({
                    audio: true
                });
                setupAudioVisualization(stream);
                stream.getTracks().forEach(track => {
                    peerConnection.addTrack(track, stream);
                });
                peerConnection.addEventListener('track', (evt) => {
                    if (audioOutput.srcObject !== evt.streams[0]) {
                        audioOutput.srcObject = evt.streams[0];
                        audioOutput.play();
                    }
                });
                
                // Create data channel for text messages
                dataChannel = peerConnection.createDataChannel('text');
                dataChannel.onopen = () => {
                    console.log('Data channel opened');
                };
                dataChannel.onmessage = (event) => {
                    const eventJson = JSON.parse(event.data);
                    if (eventJson.type === "error") {
                        showError(eventJson.message);
                    }
                };
                
                const offer = await peerConnection.createOffer();
                await peerConnection.setLocalDescription(offer);
                await new Promise((resolve) => {
                    if (peerConnection.iceGatheringState === "complete") {
                        resolve();
                    } else {
                        const checkState = () => {
                            if (peerConnection.iceGatheringState === "complete") {
                                peerConnection.removeEventListener("icegatheringstatechange", checkState);
                                resolve();
                            }
                        };
                        peerConnection.addEventListener("icegatheringstatechange", checkState);
                    }
                });
                
                peerConnection.addEventListener('connectionstatechange', () => {
                    console.log('connectionstatechange', peerConnection.connectionState);
                    if (peerConnection.connectionState === 'connected') {
                        clearTimeout(timeoutId);
                        const toast = document.getElementById('error-toast');
                        toast.style.display = 'none';
                    }
                    updateButtonState();
                });
                
                webrtc_id = Math.random().toString(36).substring(7);
                
                const response = await fetch('/webrtc/offer', {
                    method: 'POST',
                    headers: { 'Content-Type': 'application/json' },
                    body: JSON.stringify({
                        sdp: peerConnection.localDescription.sdp,
                        type: peerConnection.localDescription.type,
                        webrtc_id: webrtc_id,
                        web_search_enabled: webSearchEnabled,
                        session_id: currentSessionId,
                        user_name: userName,
                        memories: userMemories
                    })
                });
                
                const serverResponse = await response.json();
                if (serverResponse.status === 'failed') {
                    showError(serverResponse.meta.error === 'concurrency_limit_reached'
                        ? `๋„ˆ๋ฌด ๋งŽ์€ ์—ฐ๊ฒฐ์ž…๋‹ˆ๋‹ค. ์ตœ๋Œ€ ํ•œ๋„๋Š” ${serverResponse.meta.limit} ์ž…๋‹ˆ๋‹ค.`
                        : serverResponse.meta.error);
                    stop();
                    return;
                }
                
                await peerConnection.setRemoteDescription(serverResponse);
                const eventSource = new EventSource('/outputs?webrtc_id=' + webrtc_id);
                eventSource.addEventListener("output", (event) => {
                    const eventJson = JSON.parse(event.data);
                    let content = eventJson.content;
                    
                    if (eventJson.detected_language) {
                        content += ` <span class="language-info">[${eventJson.detected_language}]</span>`;
                    }
                    addMessage("assistant", content);
                });
                eventSource.addEventListener("search", (event) => {
                    const eventJson = JSON.parse(event.data);
                    if (eventJson.query) {
                        addMessage("search-result", `์›น ๊ฒ€์ƒ‰ ์ค‘: "${eventJson.query}"`);
                    }
                });
            } catch (err) {
                clearTimeout(timeoutId);
                console.error('Error setting up WebRTC:', err);
                showError('์—ฐ๊ฒฐ์„ ์„ค์ •ํ•˜์ง€ ๋ชปํ–ˆ์Šต๋‹ˆ๋‹ค. ๋‹ค์‹œ ์‹œ๋„ํ•ด ์ฃผ์„ธ์š”.');
                stop();
            }
        }
        
        function addMessage(role, content, save = true) {
            const messageDiv = document.createElement('div');
            messageDiv.classList.add('message', role);
            
            if (content.includes('<span')) {
                messageDiv.innerHTML = content;
            } else {
                messageDiv.textContent = content;
            }
            chatMessages.appendChild(messageDiv);
            chatMessages.scrollTop = chatMessages.scrollHeight;
            
            // Save message to database if save flag is true
            if (save && currentSessionId && role !== 'memory-update' && role !== 'search-result') {
                fetch('/message/save', {
                    method: 'POST',
                    headers: { 'Content-Type': 'application/json' },
                    body: JSON.stringify({
                        session_id: currentSessionId,
                        role: role,
                        content: content
                    })
                }).catch(error => console.error('Failed to save message:', error));
            }
        }
        
        function stop() {
            console.log('[STOP] Stopping connection...');
            
            // Cancel animation frame first
            if (animationFrame) {
                cancelAnimationFrame(animationFrame);
                animationFrame = null;
            }
            
            // Close audio context
            if (audioContext) {
                audioContext.close();
                audioContext = null;
                analyser = null;
                audioSource = null;
            }
            
            // Close data channel
            if (dataChannel) {
                dataChannel.close();
                dataChannel = null;
            }
            
            // Close peer connection
            if (peerConnection) {
                console.log('[STOP] Current connection state:', peerConnection.connectionState);
                
                // Stop all transceivers
                if (peerConnection.getTransceivers) {
                    peerConnection.getTransceivers().forEach(transceiver => {
                        if (transceiver.stop) {
                            transceiver.stop();
                        }
                    });
                }
                
                // Stop all senders
                if (peerConnection.getSenders) {
                    peerConnection.getSenders().forEach(sender => {
                        if (sender.track) {
                            sender.track.stop();
                        }
                    });
                }
                
                // Stop all receivers
                if (peerConnection.getReceivers) {
                    peerConnection.getReceivers().forEach(receiver => {
                        if (receiver.track) {
                            receiver.track.stop();
                        }
                    });
                }
                
                // Close the connection
                peerConnection.close();
                
                // Clear the reference
                peerConnection = null;
                
                console.log('[STOP] Connection closed');
            }
            
            // Reset audio level
            audioLevel = 0;
            isVoiceActive = false;
            
            // Update UI
            updateButtonState();
            
            // Clear any existing webrtc_id
            if (webrtc_id) {
                console.log('[STOP] Clearing webrtc_id:', webrtc_id);
                webrtc_id = null;
            }
        }
        
        startButton.addEventListener('click', () => {
            console.log('clicked');
            console.log(peerConnection, peerConnection?.connectionState);
            if (!peerConnection || peerConnection.connectionState !== 'connected') {
                setupWebRTC();
            } else {
                console.log('stopping');
                stop();
            }
        });
        
        // Initialize on page load
        window.addEventListener('DOMContentLoaded', () => {
            sendButton.style.display = 'block';
            endSessionButton.style.display = 'block';
            startNewSession();
            loadHistory();
            loadMemories();
        });
    </script>
</body>

</html>"""


class BraveSearchClient:
    """Brave Search API client"""
    def __init__(self, api_key: str):
        self.api_key = api_key
        self.base_url = "https://api.search.brave.com/res/v1/web/search"
    
    async def search(self, query: str, count: int = 10) -> List[Dict]:
        """Perform a web search using Brave Search API"""
        if not self.api_key:
            return []
        
        headers = {
            "Accept": "application/json",
            "X-Subscription-Token": self.api_key
        }
        params = {
            "q": query,
            "count": count,
            "lang": "ko"
        }
        
        async with httpx.AsyncClient() as client:
            try:
                response = await client.get(self.base_url, headers=headers, params=params)
                response.raise_for_status()
                data = response.json()
                
                results = []
                if "web" in data and "results" in data["web"]:
                    for result in data["web"]["results"][:count]:
                        results.append({
                            "title": result.get("title", ""),
                            "url": result.get("url", ""),
                            "description": result.get("description", "")
                        })
                return results
            except Exception as e:
                print(f"Brave Search error: {e}")
                return []


# Database helper class
class PersonalAssistantDB:
    """Database manager for personal assistant"""
    
    @staticmethod
    async def init():
        """Initialize database tables"""
        async with aiosqlite.connect(DB_PATH) as db:
            # Conversations table
            await db.execute("""
                CREATE TABLE IF NOT EXISTS conversations (
                    id TEXT PRIMARY KEY,
                    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
                    updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
                    summary TEXT
                )
            """)
            
            # Messages table
            await db.execute("""
                CREATE TABLE IF NOT EXISTS messages (
                    id INTEGER PRIMARY KEY AUTOINCREMENT,
                    session_id TEXT NOT NULL,
                    role TEXT NOT NULL,
                    content TEXT NOT NULL,
                    detected_language TEXT,
                    timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
                    FOREIGN KEY (session_id) REFERENCES conversations(id)
                )
            """)
            
            # User memories table - stores personal information
            await db.execute("""
                CREATE TABLE IF NOT EXISTS user_memories (
                    id INTEGER PRIMARY KEY AUTOINCREMENT,
                    category TEXT NOT NULL,
                    content TEXT NOT NULL,
                    confidence REAL DEFAULT 1.0,
                    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
                    updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
                    source_session_id TEXT,
                    FOREIGN KEY (source_session_id) REFERENCES conversations(id)
                )
            """)
            
            # Create indexes for better performance
            await db.execute("CREATE INDEX IF NOT EXISTS idx_memories_category ON user_memories(category)")
            await db.execute("CREATE INDEX IF NOT EXISTS idx_messages_session ON messages(session_id)")
            
            await db.commit()
    
    @staticmethod
    async def create_session(session_id: str):
        """Create a new conversation session"""
        async with aiosqlite.connect(DB_PATH) as db:
            await db.execute(
                "INSERT INTO conversations (id) VALUES (?)",
                (session_id,)
            )
            await db.commit()
    
    @staticmethod
    async def save_message(session_id: str, role: str, content: str):
        """Save a message to the database"""
        # Check for None or empty content
        if not content:
            print(f"[SAVE_MESSAGE] Empty content for {role} message, skipping")
            return
            
        # Detect language
        detected_language = None
        try:
            if content and len(content) > 10:
                detected_language = detect(content)
        except (LangDetectException, Exception) as e:
            print(f"Language detection error: {e}")
        
        async with aiosqlite.connect(DB_PATH) as db:
            await db.execute(
                """INSERT INTO messages (session_id, role, content, detected_language) 
                   VALUES (?, ?, ?, ?)""",
                (session_id, role, content, detected_language)
            )
            
            # Update conversation's updated_at timestamp
            await db.execute(
                "UPDATE conversations SET updated_at = CURRENT_TIMESTAMP WHERE id = ?",
                (session_id,)
            )
            
            # Update conversation summary (use first user message as summary)
            if role == "user":
                cursor = await db.execute(
                    "SELECT summary FROM conversations WHERE id = ?",
                    (session_id,)
                )
                row = await cursor.fetchone()
                if row and not row[0]:
                    summary = content[:100] + "..." if len(content) > 100 else content
                    await db.execute(
                        "UPDATE conversations SET summary = ? WHERE id = ?",
                        (summary, session_id)
                    )
            
            await db.commit()
    
    @staticmethod
    async def get_recent_conversations(limit: int = 10):
        """Get recent conversations"""
        async with aiosqlite.connect(DB_PATH) as db:
            cursor = await db.execute(
                """SELECT id, created_at, summary 
                   FROM conversations 
                   ORDER BY updated_at DESC 
                   LIMIT ?""",
                (limit,)
            )
            rows = await cursor.fetchall()
            return [
                {
                    "id": row[0],
                    "created_at": row[1],
                    "summary": row[2] or "์ƒˆ ๋Œ€ํ™”"
                }
                for row in rows
            ]
    
    @staticmethod
    async def get_conversation_messages(session_id: str):
        """Get all messages for a conversation"""
        async with aiosqlite.connect(DB_PATH) as db:
            cursor = await db.execute(
                """SELECT role, content, detected_language, timestamp 
                   FROM messages 
                   WHERE session_id = ? 
                   ORDER BY timestamp ASC""",
                (session_id,)
            )
            rows = await cursor.fetchall()
            return [
                {
                    "role": row[0],
                    "content": row[1],
                    "detected_language": row[2],
                    "timestamp": row[3]
                }
                for row in rows
            ]
    
    @staticmethod
    async def save_memory(category: str, content: str, session_id: str = None, confidence: float = 1.0):
        """Save or update a user memory"""
        async with aiosqlite.connect(DB_PATH) as db:
            # Check if similar memory exists
            cursor = await db.execute(
                """SELECT id, content FROM user_memories 
                   WHERE category = ? AND content LIKE ?
                   LIMIT 1""",
                (category, f"%{content[:20]}%")
            )
            existing = await cursor.fetchone()
            
            if existing:
                # Update existing memory
                await db.execute(
                    """UPDATE user_memories 
                       SET content = ?, confidence = ?, updated_at = CURRENT_TIMESTAMP,
                           source_session_id = ?
                       WHERE id = ?""",
                    (content, confidence, session_id, existing[0])
                )
            else:
                # Insert new memory
                await db.execute(
                    """INSERT INTO user_memories (category, content, confidence, source_session_id)
                       VALUES (?, ?, ?, ?)""",
                    (category, content, confidence, session_id)
                )
            
            await db.commit()
    
    @staticmethod
    async def get_all_memories():
        """Get all user memories"""
        async with aiosqlite.connect(DB_PATH) as db:
            cursor = await db.execute(
                """SELECT category, content, confidence, updated_at 
                   FROM user_memories 
                   ORDER BY category, updated_at DESC"""
            )
            rows = await cursor.fetchall()
            return [
                {
                    "category": row[0],
                    "content": row[1],
                    "confidence": row[2],
                    "updated_at": row[3]
                }
                for row in rows
            ]
    
    @staticmethod
    async def extract_and_save_memories(session_id: str):
        """Extract memories from conversation and save them"""
        # Get all messages from the session
        messages = await PersonalAssistantDB.get_conversation_messages(session_id)
        
        if not messages:
            return
        
        # Prepare conversation text for analysis
        conversation_text = "\n".join([
            f"{msg['role']}: {msg['content']}" 
            for msg in messages if msg.get('content')
        ])
        
        # Use GPT to extract memories
        client = openai.AsyncOpenAI()
        
        try:
            response = await client.chat.completions.create(
                model="gpt-4.1-mini",
                messages=[
                    {
                        "role": "system",
                        "content": """You are a memory extraction system. Extract personal information from conversations.
                        
Categories to extract:
- personal_info: ์ด๋ฆ„, ๋‚˜์ด, ์„ฑ๋ณ„, ์ง์—…, ๊ฑฐ์ฃผ์ง€
- preferences: ์ข‹์•„ํ•˜๋Š” ๊ฒƒ, ์‹ซ์–ดํ•˜๋Š” ๊ฒƒ, ์ทจํ–ฅ
- important_dates: ์ƒ์ผ, ๊ธฐ๋…์ผ, ์ค‘์š”ํ•œ ๋‚ ์งœ
- relationships: ๊ฐ€์กฑ, ์นœ๊ตฌ, ๋™๋ฃŒ ๊ด€๊ณ„
- hobbies: ์ทจ๋ฏธ, ๊ด€์‹ฌ์‚ฌ
- health: ๊ฑด๊ฐ• ์ƒํƒœ, ์•Œ๋ ˆ๋ฅด๊ธฐ, ์˜๋ฃŒ ์ •๋ณด
- goals: ๋ชฉํ‘œ, ๊ณ„ํš, ๊ฟˆ
- routines: ์ผ์ƒ, ์Šต๊ด€, ๋ฃจํ‹ด
- work: ์ง์žฅ, ์—…๋ฌด, ํ”„๋กœ์ ํŠธ
- education: ํ•™๋ ฅ, ์ „๊ณต, ํ•™์Šต

Return as JSON array with format:
[
  {
    "category": "category_name",
    "content": "extracted information in Korean",
    "confidence": 0.0-1.0
  }
]

Only extract clear, factual information. Do not make assumptions."""
                    },
                    {
                        "role": "user",
                        "content": f"Extract memories from this conversation:\n\n{conversation_text}"
                    }
                ],
                temperature=0.3,
                max_tokens=2000
            )
            
            # Parse and save memories
            memories_text = response.choices[0].message.content
            
            # Extract JSON from response
            import re
            json_match = re.search(r'\[.*\]', memories_text, re.DOTALL)
            if json_match:
                memories = json.loads(json_match.group())
                
                for memory in memories:
                    if memory.get('content') and len(memory['content']) > 5:
                        await PersonalAssistantDB.save_memory(
                            category=memory.get('category', 'general'),
                            content=memory['content'],
                            session_id=session_id,
                            confidence=memory.get('confidence', 0.8)
                        )
                
                print(f"Extracted and saved {len(memories)} memories from session {session_id}")
        
        except Exception as e:
            print(f"Error extracting memories: {e}")


# Initialize search client globally
brave_api_key = os.getenv("BSEARCH_API")
search_client = BraveSearchClient(brave_api_key) if brave_api_key else None
print(f"Search client initialized: {search_client is not None}, API key present: {bool(brave_api_key)}")

# Store connection settings
connection_settings = {}

# Initialize OpenAI client for text chat
client = openai.AsyncOpenAI()


def update_chatbot(chatbot: list[dict], response: ResponseAudioTranscriptDoneEvent):
    chatbot.append({"role": "assistant", "content": response.transcript})
    return chatbot


def format_memories_for_prompt(memories: Dict[str, List[str]]) -> str:
    """Format memories for inclusion in system prompt"""
    if not memories:
        return ""
    
    memory_text = "\n\n=== ๊ธฐ์–ต๋œ ์ •๋ณด ===\n"
    for category, items in memories.items():
        if items and isinstance(items, list):
            memory_text += f"\n[{category}]\n"
            for item in items:
                if item:  # Check if item is not None or empty
                    memory_text += f"- {item}\n"
    
    return memory_text


async def process_text_chat(message: str, web_search_enabled: bool, session_id: str, 
                          user_name: str = "", memories: Dict = None) -> Dict[str, str]:
    """Process text chat using GPT-4o-mini model"""
    try:
        # Check for empty or None message
        if not message:
            return {"error": "๋ฉ”์‹œ์ง€๊ฐ€ ๋น„์–ด์žˆ์Šต๋‹ˆ๋‹ค."}
            
        # Check for stop words
        stop_words = ["์ค‘๋‹จ", "๊ทธ๋งŒ", "์Šคํ†ฑ", "stop", "๋‹ฅ์ณ", "๋ฉˆ์ถฐ", "์ค‘์ง€"]
        if any(word in message.lower() for word in stop_words):
            return {
                "response": "๋Œ€ํ™”๋ฅผ ์ค‘๋‹จํ•ฉ๋‹ˆ๋‹ค.",
                "detected_language": "ko"
            }
        
        # Build system prompt with memories
        base_prompt = f"""You are a personal AI assistant for {user_name if user_name else 'the user'}. 
You remember all previous conversations and personal information about the user.
Be friendly, helpful, and personalized in your responses.
Always use the information you remember to make conversations more personal and relevant.
IMPORTANT: Give only ONE response. Do not repeat or give multiple answers."""
        
        # Add memories to prompt
        if memories:
            memory_text = format_memories_for_prompt(memories)
            base_prompt += memory_text
        
        messages = [{"role": "system", "content": base_prompt}]
        
        # Handle web search if enabled
        if web_search_enabled and search_client and message:
            search_keywords = ["๋‚ ์”จ", "๊ธฐ์˜จ", "๋น„", "๋ˆˆ", "๋‰ด์Šค", "์†Œ์‹", "ํ˜„์žฌ", "์ตœ๊ทผ", 
                             "์˜ค๋Š˜", "์ง€๊ธˆ", "๊ฐ€๊ฒฉ", "ํ™˜์œจ", "์ฃผ๊ฐ€", "weather", "news", 
                             "current", "today", "price", "2024", "2025"]
            
            should_search = any(keyword in message.lower() for keyword in search_keywords)
            
            if should_search:
                search_results = await search_client.search(message)
                if search_results:
                    search_context = "์›น ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ:\n\n"
                    for i, result in enumerate(search_results[:5], 1):
                        search_context += f"{i}. {result['title']}\n{result['description']}\n\n"
                    
                    messages.append({
                        "role": "system", 
                        "content": "๋‹ค์Œ ์›น ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ๋ฅผ ์ฐธ๊ณ ํ•˜์—ฌ ๋‹ต๋ณ€ํ•˜์„ธ์š”:\n\n" + search_context
                    })
        
        messages.append({"role": "user", "content": message})
        
        # Call GPT-4o-mini
        response = await client.chat.completions.create(
            model="gpt-4.1-mini",
            messages=messages,
            temperature=0.7,
            max_tokens=2000
        )
        
        response_text = response.choices[0].message.content
        
        # Detect language
        detected_language = None
        try:
            if response_text and len(response_text) > 10:
                detected_language = detect(response_text)
        except:
            pass
        
        # Save messages to database
        if session_id:
            await PersonalAssistantDB.save_message(session_id, "user", message)
            await PersonalAssistantDB.save_message(session_id, "assistant", response_text)
        
        return {
            "response": response_text,
            "detected_language": detected_language
        }
        
    except Exception as e:
        print(f"Error in text chat: {e}")
        return {"error": str(e)}


class OpenAIHandler(AsyncStreamHandler):
    def __init__(self, web_search_enabled: bool = False, webrtc_id: str = None, 
                 session_id: str = None, user_name: str = "", memories: Dict = None) -> None:
        super().__init__(
            expected_layout="mono",
            output_sample_rate=SAMPLE_RATE,
            output_frame_size=480,
            input_sample_rate=SAMPLE_RATE,
        )
        self.connection = None
        self.output_queue = asyncio.Queue()
        self.search_client = search_client
        self.function_call_in_progress = False
        self.current_function_args = ""
        self.current_call_id = None
        self.webrtc_id = webrtc_id
        self.web_search_enabled = web_search_enabled
        self.session_id = session_id
        self.user_name = user_name
        self.memories = memories or {}
        self.is_responding = False  # Track if already responding
        self.should_stop = False  # Track if conversation should stop
        
        print(f"[INIT] Handler created with web_search={web_search_enabled}, session_id={session_id}, user={user_name}")

    def copy(self):
        if connection_settings:
            recent_ids = sorted(connection_settings.keys(), 
                              key=lambda k: connection_settings[k].get('timestamp', 0), 
                              reverse=True)
            if recent_ids:
                recent_id = recent_ids[0]
                settings = connection_settings[recent_id]
                
                print(f"[COPY] Copying settings from {recent_id}:")
                
                return OpenAIHandler(
                    web_search_enabled=settings.get('web_search_enabled', False),
                    webrtc_id=recent_id,
                    session_id=settings.get('session_id'),
                    user_name=settings.get('user_name', ''),
                    memories=settings.get('memories', {})
                )
        
        print(f"[COPY] No settings found, creating default handler")
        return OpenAIHandler(web_search_enabled=False)

    async def search_web(self, query: str) -> str:
        """Perform web search and return formatted results"""
        if not self.search_client or not self.web_search_enabled:
            return "์›น ๊ฒ€์ƒ‰์ด ๋น„ํ™œ์„ฑํ™”๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค."
        
        print(f"Searching web for: {query}")
        results = await self.search_client.search(query)
        if not results:
            return f"'{query}'์— ๋Œ€ํ•œ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ๋ฅผ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค."
        
        formatted_results = []
        for i, result in enumerate(results, 1):
            formatted_results.append(
                f"{i}. {result['title']}\n"
                f"   URL: {result['url']}\n"
                f"   {result['description']}\n"
            )
        
        return f"์›น ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ '{query}':\n\n" + "\n".join(formatted_results)

    async def process_text_message(self, message: str):
        """Process text message from user"""
        if self.connection:
            await self.connection.conversation.item.create(
                item={
                    "type": "message",
                    "role": "user",
                    "content": [{"type": "input_text", "text": message}]
                }
            )
            await self.connection.response.create()

    async def start_up(self):
        """Connect to realtime API"""
        if connection_settings and self.webrtc_id:
            if self.webrtc_id in connection_settings:
                settings = connection_settings[self.webrtc_id]
                self.web_search_enabled = settings.get('web_search_enabled', False)
                self.session_id = settings.get('session_id')
                self.user_name = settings.get('user_name', '')
                self.memories = settings.get('memories', {})
                
                print(f"[START_UP] Updated settings from storage for {self.webrtc_id}")
        
        self.client = openai.AsyncOpenAI()
        
        print(f"[REALTIME API] Connecting...")
        
        # Build system prompt with memories
        base_instructions = f"""You are a personal AI assistant for {self.user_name if self.user_name else 'the user'}. 
You remember all previous conversations and personal information about the user.
Be friendly, helpful, and personalized in your responses.
Always use the information you remember to make conversations more personal and relevant.
IMPORTANT: Give only ONE response per user input. Do not repeat yourself or give multiple answers."""
        
        # Add memories to prompt
        if self.memories:
            memory_text = format_memories_for_prompt(self.memories)
            base_instructions += memory_text
        
        # Define the web search function
        tools = []
        if self.web_search_enabled and self.search_client:
            tools = [{
                "type": "function",
                "function": {
                    "name": "web_search",
                    "description": "Search the web for current information. Use this for weather, news, prices, current events, or any time-sensitive topics.",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "query": {
                                "type": "string",
                                "description": "The search query"
                            }
                        },
                        "required": ["query"]
                    }
                }
            }]
            
            search_instructions = (
                "\n\nYou have web search capabilities. "
                "Use web_search for current information like weather, news, prices, etc."
            )
            
            instructions = base_instructions + search_instructions
        else:
            instructions = base_instructions
        
        async with self.client.beta.realtime.connect(
            model="gpt-4o-mini-realtime-preview-2024-12-17"
        ) as conn:
            session_update = {
                "turn_detection": {
                    "type": "server_vad",
                    "threshold": 0.5,
                    "prefix_padding_ms": 300,
                    "silence_duration_ms": 200
                },
                "instructions": instructions,
                "tools": tools,
                "tool_choice": "auto" if tools else "none",
                "temperature": 0.7,
                "max_response_output_tokens": 4096,
                "modalities": ["text", "audio"],
                "voice": "alloy"
            }
            
            try:
                await conn.session.update(session=session_update)
                self.connection = conn
                print(f"Connected with tools: {len(tools)} functions")
                print(f"Session update successful")
            except Exception as e:
                print(f"Error updating session: {e}")
                raise
            
            async for event in self.connection:
                # Debug log for all events
                if hasattr(event, 'type'):
                    if event.type not in ["response.audio.delta", "response.audio.done"]:
                        print(f"[EVENT] Type: {event.type}")
                
                # Handle user input audio transcription
                if event.type == "conversation.item.input_audio_transcription.completed":
                    if hasattr(event, 'transcript') and event.transcript:
                        user_text = event.transcript.lower()
                        stop_words = ["์ค‘๋‹จ", "๊ทธ๋งŒ", "์Šคํ†ฑ", "stop", "๋‹ฅ์ณ", "๋ฉˆ์ถฐ", "์ค‘์ง€"]
                        
                        if any(word in user_text for word in stop_words):
                            print(f"[STOP DETECTED] User said: {event.transcript}")
                            self.should_stop = True
                            if self.connection:
                                try:
                                    await self.connection.response.cancel()
                                except:
                                    pass
                            continue
                        
                        # Save user message to database
                        if self.session_id:
                            await PersonalAssistantDB.save_message(self.session_id, "user", event.transcript)
                
                # Handle user transcription for stop detection (alternative event)
                elif event.type == "conversation.item.created":
                    if hasattr(event, 'item') and hasattr(event.item, 'role') and event.item.role == "user":
                        if hasattr(event.item, 'content') and event.item.content:
                            for content_item in event.item.content:
                                if hasattr(content_item, 'transcript') and content_item.transcript:
                                    user_text = content_item.transcript.lower()
                                    stop_words = ["์ค‘๋‹จ", "๊ทธ๋งŒ", "์Šคํ†ฑ", "stop", "๋‹ฅ์ณ", "๋ฉˆ์ถฐ", "์ค‘์ง€"]
                                    
                                    if any(word in user_text for word in stop_words):
                                        print(f"[STOP DETECTED] User said: {content_item.transcript}")
                                        self.should_stop = True
                                        if self.connection:
                                            try:
                                                await self.connection.response.cancel()
                                            except:
                                                pass
                                        continue
                                    
                                    # Save user message to database
                                    if self.session_id:
                                        await PersonalAssistantDB.save_message(self.session_id, "user", content_item.transcript)
                
                elif event.type == "response.audio_transcript.done":
                    # Prevent multiple responses
                    if self.is_responding:
                        print("[DUPLICATE RESPONSE] Skipping duplicate response")
                        continue
                    
                    self.is_responding = True
                    print(f"[RESPONSE] Transcript: {event.transcript[:100] if event.transcript else 'None'}...")
                    
                    # Detect language
                    detected_language = None
                    try:
                        if event.transcript and len(event.transcript) > 10:
                            detected_language = detect(event.transcript)
                    except Exception as e:
                        print(f"Language detection error: {e}")
                    
                    # Save to database
                    if self.session_id and event.transcript:
                        await PersonalAssistantDB.save_message(self.session_id, "assistant", event.transcript)
                    
                    output_data = {
                        "event": event,
                        "detected_language": detected_language
                    }
                    await self.output_queue.put(AdditionalOutputs(output_data))
                
                elif event.type == "response.done":
                    # Reset responding flag when response is complete
                    self.is_responding = False
                    self.should_stop = False
                    print("[RESPONSE DONE] Response completed")
                
                elif event.type == "response.audio.delta":
                    # Check if we should stop
                    if self.should_stop:
                        continue
                    
                    if hasattr(event, 'delta'):
                        await self.output_queue.put(
                            (
                                self.output_sample_rate,
                                np.frombuffer(
                                    base64.b64decode(event.delta), dtype=np.int16
                                ).reshape(1, -1),
                            ),
                        )
                
                # Handle errors
                elif event.type == "error":
                    print(f"[ERROR] {event}")
                    self.is_responding = False
                
                # Handle function calls
                elif event.type == "response.function_call_arguments.start":
                    print(f"Function call started")
                    self.function_call_in_progress = True
                    self.current_function_args = ""
                    self.current_call_id = getattr(event, 'call_id', None)
                
                elif event.type == "response.function_call_arguments.delta":
                    if self.function_call_in_progress:
                        self.current_function_args += event.delta
                
                elif event.type == "response.function_call_arguments.done":
                    if self.function_call_in_progress:
                        print(f"Function call done, args: {self.current_function_args}")
                        try:
                            args = json.loads(self.current_function_args)
                            query = args.get("query", "")
                            
                            # Emit search event to client
                            await self.output_queue.put(AdditionalOutputs({
                                "type": "search",
                                "query": query
                            }))
                            
                            # Perform the search
                            search_results = await self.search_web(query)
                            print(f"Search results length: {len(search_results)}")
                            
                            # Send function result back to the model
                            if self.connection and self.current_call_id:
                                await self.connection.conversation.item.create(
                                    item={
                                        "type": "function_call_output",
                                        "call_id": self.current_call_id,
                                        "output": search_results
                                    }
                                )
                                await self.connection.response.create()
                        
                        except Exception as e:
                            print(f"Function call error: {e}")
                        finally:
                            self.function_call_in_progress = False
                            self.current_function_args = ""
                            self.current_call_id = None

    async def receive(self, frame: tuple[int, np.ndarray]) -> None:
        if not self.connection:
            print(f"[RECEIVE] No connection, skipping")
            return
        try:
            if frame is None or len(frame) < 2:
                print(f"[RECEIVE] Invalid frame")
                return
                
            _, array = frame
            if array is None:
                print(f"[RECEIVE] Null array")
                return
                
            array = array.squeeze()
            audio_message = base64.b64encode(array.tobytes()).decode("utf-8")
            await self.connection.input_audio_buffer.append(audio=audio_message)
        except Exception as e:
            print(f"Error in receive: {e}")

    async def emit(self) -> tuple[int, np.ndarray] | AdditionalOutputs | None:
        item = await wait_for_item(self.output_queue)
        
        if isinstance(item, dict) and item.get('type') == 'text_message':
            await self.process_text_message(item['content'])
            return None
        
        return item

    async def shutdown(self) -> None:
        print(f"[SHUTDOWN] Called")
        
        if self.connection:
            await self.connection.close()
            self.connection = None
            print("[REALTIME API] Connection closed")


# Create initial handler instance
handler = OpenAIHandler(web_search_enabled=False)

# Create components
chatbot = gr.Chatbot(type="messages")

# Create stream with handler instance
stream = Stream(
    handler,
    mode="send-receive",
    modality="audio",
    additional_inputs=[chatbot],
    additional_outputs=[chatbot],
    additional_outputs_handler=update_chatbot,
    rtc_configuration=get_twilio_turn_credentials() if get_space() else None,
    concurrency_limit=5 if get_space() else None,
    time_limit=300 if get_space() else None,
)

app = FastAPI()

# Mount stream
stream.mount(app)

# Initialize database on startup
@app.on_event("startup")
async def startup_event():
    try:
        await PersonalAssistantDB.init()
        print(f"Database initialized at: {DB_PATH}")
        print(f"Persistent directory: {PERSISTENT_DIR}")
        print(f"DB file exists: {os.path.exists(DB_PATH)}")
        
        # Check if we're in Hugging Face Space
        if os.path.exists("/data"):
            print("Running in Hugging Face Space with persistent storage")
            # List files in persistent directory
            try:
                files = os.listdir(PERSISTENT_DIR)
                print(f"Files in persistent directory: {files}")
            except Exception as e:
                print(f"Error listing files: {e}")
    except Exception as e:
        print(f"Error during startup: {e}")
        # Try to create directory if it doesn't exist
        os.makedirs(PERSISTENT_DIR, exist_ok=True)
        await PersonalAssistantDB.init()

# Intercept offer to capture settings
@app.post("/webrtc/offer", include_in_schema=False)
async def custom_offer(request: Request):
    """Intercept offer to capture settings"""
    body = await request.json()
    
    webrtc_id = body.get("webrtc_id")
    web_search_enabled = body.get("web_search_enabled", False)
    session_id = body.get("session_id")
    user_name = body.get("user_name", "")
    memories = body.get("memories", {})
    
    print(f"[OFFER] Received offer with webrtc_id: {webrtc_id}")
    print(f"[OFFER] web_search_enabled: {web_search_enabled}")
    print(f"[OFFER] session_id: {session_id}")
    print(f"[OFFER] user_name: {user_name}")
    
    # Store settings with timestamp
    if webrtc_id:
        connection_settings[webrtc_id] = {
            'web_search_enabled': web_search_enabled,
            'session_id': session_id,
            'user_name': user_name,
            'memories': memories,
            'timestamp': asyncio.get_event_loop().time()
        }
        
        print(f"[OFFER] Stored settings for {webrtc_id}")
    
    # Remove our custom route temporarily
    custom_route = None
    for i, route in enumerate(app.routes):
        if hasattr(route, 'path') and route.path == "/webrtc/offer" and route.endpoint == custom_offer:
            custom_route = app.routes.pop(i)
            break
    
    # Forward to stream's offer handler
    print(f"[OFFER] Forwarding to stream.offer()")
    response = await stream.offer(body)
    
    # Re-add our custom route
    if custom_route:
        app.routes.insert(0, custom_route)
    
    print(f"[OFFER] Response status: {response.get('status', 'unknown') if isinstance(response, dict) else 'OK'}")
    
    return response


@app.post("/session/new")
async def create_new_session():
    """Create a new chat session"""
    session_id = str(uuid.uuid4())
    await PersonalAssistantDB.create_session(session_id)
    return {"session_id": session_id}


@app.post("/session/end")
async def end_session(request: Request):
    """End session and extract memories"""
    body = await request.json()
    session_id = body.get("session_id")
    
    if not session_id:
        return {"error": "session_id required"}
    
    # Extract and save memories from the conversation
    await PersonalAssistantDB.extract_and_save_memories(session_id)
    
    return {"status": "ok"}


@app.post("/message/save")
async def save_message(request: Request):
    """Save a message to the database"""
    body = await request.json()
    session_id = body.get("session_id")
    role = body.get("role")
    content = body.get("content")
    
    if not all([session_id, role, content]):
        return {"error": "Missing required fields"}
    
    await PersonalAssistantDB.save_message(session_id, role, content)
    return {"status": "ok"}


@app.get("/history/recent")
async def get_recent_history():
    """Get recent conversation history"""
    conversations = await PersonalAssistantDB.get_recent_conversations()
    return conversations


@app.get("/history/{session_id}")
async def get_conversation(session_id: str):
    """Get messages for a specific conversation"""
    messages = await PersonalAssistantDB.get_conversation_messages(session_id)
    return messages


@app.get("/memory/all")
async def get_all_memories():
    """Get all user memories"""
    memories = await PersonalAssistantDB.get_all_memories()
    return memories


@app.post("/chat/text")
async def chat_text(request: Request):
    """Handle text chat messages using GPT-4o-mini"""
    try:
        body = await request.json()
        message = body.get("message", "")
        web_search_enabled = body.get("web_search_enabled", False)
        session_id = body.get("session_id")
        user_name = body.get("user_name", "")
        memories = body.get("memories", {})
        
        if not message:
            return {"error": "๋ฉ”์‹œ์ง€๊ฐ€ ๋น„์–ด์žˆ์Šต๋‹ˆ๋‹ค."}
        
        # Process text chat
        result = await process_text_chat(message, web_search_enabled, session_id, user_name, memories)
        
        return result
        
    except Exception as e:
        print(f"Error in chat_text endpoint: {e}")
        return {"error": "์ฑ„ํŒ… ์ฒ˜๋ฆฌ ์ค‘ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค."}


@app.post("/text_message/{webrtc_id}")
async def receive_text_message(webrtc_id: str, request: Request):
    """Receive text message from client"""
    body = await request.json()
    message = body.get("content", "")
    
    # Find the handler for this connection
    if webrtc_id in stream.handlers:
        handler = stream.handlers[webrtc_id]
        # Queue the text message for processing
        await handler.output_queue.put({
            'type': 'text_message',
            'content': message
        })
    
    return {"status": "ok"}


@app.get("/outputs")
async def outputs(webrtc_id: str):
    """Stream outputs including search events"""
    async def output_stream():
        async for output in stream.output_stream(webrtc_id):
            if hasattr(output, 'args') and output.args:
                # Check if it's a search event
                if isinstance(output.args[0], dict) and output.args[0].get('type') == 'search':
                    yield f"event: search\ndata: {json.dumps(output.args[0])}\n\n"
                # Regular transcript event with language info
                elif isinstance(output.args[0], dict) and 'event' in output.args[0]:
                    event_data = output.args[0]
                    if 'event' in event_data and hasattr(event_data['event'], 'transcript'):
                        data = {
                            "role": "assistant", 
                            "content": event_data['event'].transcript,
                            "detected_language": event_data.get('detected_language')
                        }
                        yield f"event: output\ndata: {json.dumps(data)}\n\n"

    return StreamingResponse(output_stream(), media_type="text/event-stream")


@app.get("/")
async def index():
    """Serve the HTML page"""
    rtc_config = get_twilio_turn_credentials() if get_space() else None
    html_content = HTML_CONTENT.replace("__RTC_CONFIGURATION__", json.dumps(rtc_config))
    return HTMLResponse(content=html_content)


if __name__ == "__main__":
    import uvicorn
    
    mode = os.getenv("MODE")
    if mode == "UI":
        stream.ui.launch(server_port=7860)
    elif mode == "PHONE":
        stream.fastphone(host="0.0.0.0", port=7860)
    else:
        uvicorn.run(app, host="0.0.0.0", port=7860)