Spaces:
Running
Running
File size: 83,060 Bytes
64bea29 6415ee8 64bea29 c90fc65 64bea29 73eebb3 64bea29 6415ee8 64bea29 73eebb3 64bea29 73eebb3 64bea29 73eebb3 c90fc65 64bea29 c90fc65 64bea29 73eebb3 c90fc65 64bea29 c90fc65 64bea29 c90fc65 64bea29 6415ee8 64bea29 73eebb3 ae55ef4 64bea29 73eebb3 64bea29 73eebb3 64bea29 73eebb3 64bea29 73eebb3 64bea29 73eebb3 64bea29 73eebb3 64bea29 6415ee8 c90fc65 6415ee8 64bea29 6415ee8 73eebb3 64bea29 73eebb3 c90fc65 6415ee8 73eebb3 c509d9d 6415ee8 c509d9d 64bea29 6415ee8 64bea29 c90fc65 73eebb3 6415ee8 73eebb3 6415ee8 c90fc65 73eebb3 64bea29 6415ee8 64bea29 73eebb3 c90fc65 73eebb3 c90fc65 6415ee8 73eebb3 c509d9d 64bea29 73eebb3 64bea29 73eebb3 64bea29 c90fc65 64bea29 6415ee8 73eebb3 64bea29 6415ee8 73eebb3 64bea29 73eebb3 64bea29 73eebb3 64bea29 73eebb3 64bea29 73eebb3 64bea29 6415ee8 64bea29 73eebb3 64bea29 73eebb3 64bea29 73eebb3 64bea29 73eebb3 6415ee8 64bea29 73eebb3 64bea29 73eebb3 64bea29 73eebb3 64bea29 c90fc65 64bea29 235fd3c 64bea29 73eebb3 c90fc65 64bea29 c90fc65 73eebb3 c90fc65 64bea29 ae55ef4 64bea29 78b5e61 64bea29 78b5e61 64bea29 78b5e61 64bea29 78b5e61 64bea29 78b5e61 64bea29 78b5e61 64bea29 78b5e61 64bea29 78b5e61 64bea29 78b5e61 64bea29 78b5e61 64bea29 78b5e61 64bea29 73eebb3 6415ee8 3d61f7a 6415ee8 c509d9d 6415ee8 c509d9d 6415ee8 73eebb3 c90fc65 73eebb3 6415ee8 64bea29 c90fc65 73eebb3 c90fc65 73eebb3 c90fc65 73eebb3 c90fc65 73eebb3 c90fc65 73eebb3 c90fc65 73eebb3 c90fc65 73eebb3 c90fc65 73eebb3 c90fc65 73eebb3 c90fc65 64bea29 73eebb3 64bea29 73eebb3 64bea29 73eebb3 64bea29 c90fc65 64bea29 c90fc65 64bea29 6415ee8 64bea29 c90fc65 64bea29 c90fc65 73eebb3 64bea29 c90fc65 64bea29 73eebb3 64bea29 c90fc65 73eebb3 64bea29 73eebb3 64bea29 78b5e61 64bea29 c90fc65 73eebb3 64bea29 78b5e61 235fd3c 64bea29 235fd3c 78b5e61 64bea29 c90fc65 73eebb3 78b5e61 64bea29 c90fc65 78b5e61 73eebb3 78b5e61 73eebb3 78b5e61 c90fc65 78b5e61 c90fc65 78b5e61 73eebb3 78b5e61 c90fc65 78b5e61 64bea29 73eebb3 64bea29 78b5e61 73eebb3 64bea29 73eebb3 c90fc65 73eebb3 c90fc65 73eebb3 753be88 78b5e61 c90fc65 78b5e61 64bea29 73eebb3 78b5e61 73eebb3 64bea29 235fd3c 78b5e61 235fd3c 78b5e61 235fd3c 78b5e61 753be88 78b5e61 64bea29 235fd3c c90fc65 235fd3c 73eebb3 64bea29 73eebb3 64bea29 235fd3c 64bea29 235fd3c 64bea29 235fd3c 78b5e61 235fd3c c90fc65 64bea29 235fd3c 64bea29 73eebb3 64bea29 c90fc65 73eebb3 c90fc65 64bea29 c90fc65 73eebb3 64bea29 78b5e61 c90fc65 73eebb3 64bea29 c90fc65 73eebb3 64bea29 78b5e61 73eebb3 64bea29 78b5e61 64bea29 78b5e61 64bea29 c90fc65 73eebb3 c90fc65 73eebb3 c90fc65 73eebb3 c90fc65 73eebb3 c90fc65 73eebb3 c90fc65 73eebb3 64bea29 c90fc65 73eebb3 64bea29 73eebb3 64bea29 ae55ef4 64bea29 ae55ef4 c90fc65 64bea29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 |
import asyncio
import base64
import json
from pathlib import Path
import os
import numpy as np
import openai
from dotenv import load_dotenv
from fastapi import FastAPI, Request
from fastapi.responses import HTMLResponse, StreamingResponse
from fastrtc import (
AdditionalOutputs,
AsyncStreamHandler,
Stream,
get_twilio_turn_credentials,
wait_for_item,
)
from gradio.utils import get_space
from openai.types.beta.realtime import ResponseAudioTranscriptDoneEvent
import httpx
from typing import Optional, List, Dict
import gradio as gr
import io
from scipy import signal
import wave
import aiosqlite
from langdetect import detect, LangDetectException
from datetime import datetime
import uuid
load_dotenv()
SAMPLE_RATE = 24000
# Use Persistent Storage path for Hugging Face Space
# In HF Spaces, persistent storage is at /data
if os.path.exists("/data"):
PERSISTENT_DIR = "/data"
else:
PERSISTENT_DIR = "./data"
os.makedirs(PERSISTENT_DIR, exist_ok=True)
DB_PATH = os.path.join(PERSISTENT_DIR, "personal_assistant.db")
print(f"Using persistent directory: {PERSISTENT_DIR}")
print(f"Database path: {DB_PATH}")
# HTML content embedded as a string
HTML_CONTENT = """<!DOCTYPE html>
<html lang="ko">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Personal AI Assistant</title>
<style>
:root {
--primary-color: #6f42c1;
--secondary-color: #563d7c;
--dark-bg: #121212;
--card-bg: #1e1e1e;
--text-color: #f8f9fa;
--border-color: #333;
--hover-color: #8a5cf6;
--memory-color: #4a9eff;
}
body {
font-family: "SF Pro Display", -apple-system, BlinkMacSystemFont, sans-serif;
background-color: var(--dark-bg);
color: var(--text-color);
margin: 0;
padding: 0;
height: 100vh;
display: flex;
flex-direction: column;
overflow: hidden;
}
.container {
max-width: 1400px;
margin: 0 auto;
padding: 20px;
flex-grow: 1;
display: flex;
flex-direction: column;
width: 100%;
height: 100vh;
box-sizing: border-box;
overflow: hidden;
}
.header {
text-align: center;
padding: 15px 0;
border-bottom: 1px solid var(--border-color);
margin-bottom: 20px;
flex-shrink: 0;
background-color: var(--card-bg);
}
.main-content {
display: flex;
gap: 20px;
flex-grow: 1;
min-height: 0;
overflow: hidden;
}
.sidebar {
width: 350px;
flex-shrink: 0;
display: flex;
flex-direction: column;
gap: 20px;
overflow-y: auto;
max-height: calc(100vh - 120px);
}
.chat-section {
flex-grow: 1;
display: flex;
flex-direction: column;
min-width: 0;
}
.logo {
display: flex;
align-items: center;
justify-content: center;
gap: 10px;
}
.logo h1 {
margin: 0;
background: linear-gradient(135deg, var(--primary-color), #a78bfa);
-webkit-background-clip: text;
background-clip: text;
color: transparent;
font-size: 32px;
letter-spacing: 1px;
}
/* Settings section */
.settings-section {
background-color: var(--card-bg);
border-radius: 12px;
padding: 20px;
border: 1px solid var(--border-color);
overflow-y: auto;
}
.settings-grid {
display: flex;
flex-direction: column;
gap: 15px;
margin-bottom: 15px;
}
.setting-item {
display: flex;
align-items: center;
justify-content: space-between;
gap: 10px;
}
.setting-label {
font-size: 14px;
color: #aaa;
min-width: 60px;
}
/* Toggle switch */
.toggle-switch {
position: relative;
width: 50px;
height: 26px;
background-color: #ccc;
border-radius: 13px;
cursor: pointer;
transition: background-color 0.3s;
}
.toggle-switch.active {
background-color: var(--primary-color);
}
.toggle-slider {
position: absolute;
top: 3px;
left: 3px;
width: 20px;
height: 20px;
background-color: white;
border-radius: 50%;
transition: transform 0.3s;
}
.toggle-switch.active .toggle-slider {
transform: translateX(24px);
}
/* Memory section */
.memory-section {
background-color: var(--card-bg);
border-radius: 12px;
padding: 20px;
border: 1px solid var(--border-color);
max-height: 300px;
overflow-y: auto;
}
.memory-item {
padding: 10px;
margin-bottom: 10px;
background: linear-gradient(135deg, rgba(74, 158, 255, 0.1), rgba(111, 66, 193, 0.1));
border-radius: 6px;
border-left: 3px solid var(--memory-color);
}
.memory-category {
font-size: 12px;
color: var(--memory-color);
font-weight: bold;
text-transform: uppercase;
margin-bottom: 5px;
}
.memory-content {
font-size: 14px;
color: var(--text-color);
}
/* History section */
.history-section {
background-color: var(--card-bg);
border-radius: 12px;
padding: 20px;
border: 1px solid var(--border-color);
max-height: 200px;
overflow-y: auto;
}
.history-item {
padding: 10px;
margin-bottom: 10px;
background-color: var(--dark-bg);
border-radius: 6px;
cursor: pointer;
transition: background-color 0.2s;
}
.history-item:hover {
background-color: var(--hover-color);
}
.history-date {
font-size: 12px;
color: #888;
}
.history-preview {
font-size: 14px;
margin-top: 5px;
overflow: hidden;
text-overflow: ellipsis;
white-space: nowrap;
}
/* Text inputs */
.text-input-section {
margin-top: 15px;
}
input[type="text"], textarea {
width: 100%;
background-color: var(--dark-bg);
color: var(--text-color);
border: 1px solid var(--border-color);
padding: 10px;
border-radius: 6px;
font-size: 14px;
box-sizing: border-box;
margin-top: 5px;
}
input[type="text"]:focus, textarea:focus {
outline: none;
border-color: var(--primary-color);
}
textarea {
resize: vertical;
min-height: 80px;
}
.chat-container {
border-radius: 12px;
background-color: var(--card-bg);
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.2);
padding: 20px;
flex-grow: 1;
display: flex;
flex-direction: column;
border: 1px solid var(--border-color);
overflow: hidden;
min-height: 0;
height: 100%;
}
.chat-messages {
flex-grow: 1;
overflow-y: auto;
padding: 15px;
scrollbar-width: thin;
scrollbar-color: var(--primary-color) var(--card-bg);
min-height: 0;
max-height: calc(100vh - 250px);
}
.chat-messages::-webkit-scrollbar {
width: 6px;
}
.chat-messages::-webkit-scrollbar-thumb {
background-color: var(--primary-color);
border-radius: 6px;
}
.message {
margin-bottom: 15px;
padding: 12px 16px;
border-radius: 8px;
font-size: 15px;
line-height: 1.5;
position: relative;
max-width: 85%;
animation: fade-in 0.3s ease-out;
word-wrap: break-word;
}
@keyframes fade-in {
from {
opacity: 0;
transform: translateY(10px);
}
to {
opacity: 1;
transform: translateY(0);
}
}
.message.user {
background: linear-gradient(135deg, #2c3e50, #34495e);
margin-left: auto;
border-bottom-right-radius: 2px;
}
.message.assistant {
background: linear-gradient(135deg, var(--secondary-color), var(--primary-color));
margin-right: auto;
border-bottom-left-radius: 2px;
}
.message.search-result {
background: linear-gradient(135deg, #1a5a3e, #2e7d32);
font-size: 14px;
padding: 10px;
margin-bottom: 10px;
}
.message.memory-update {
background: linear-gradient(135deg, rgba(74, 158, 255, 0.2), rgba(111, 66, 193, 0.2));
font-size: 13px;
padding: 8px 12px;
margin-bottom: 10px;
border-left: 3px solid var(--memory-color);
}
.language-info {
font-size: 12px;
color: #888;
margin-left: 5px;
}
.controls {
text-align: center;
margin-top: auto;
display: flex;
justify-content: center;
gap: 10px;
flex-shrink: 0;
padding-top: 20px;
}
/* Responsive design */
@media (max-width: 1024px) {
.sidebar {
width: 300px;
}
}
@media (max-width: 768px) {
.main-content {
flex-direction: column;
}
.sidebar {
width: 100%;
margin-bottom: 20px;
}
.chat-section {
height: 400px;
}
}
button {
background: linear-gradient(135deg, var(--primary-color), var(--secondary-color));
color: white;
border: none;
padding: 14px 28px;
font-family: inherit;
font-size: 16px;
cursor: pointer;
transition: all 0.3s;
text-transform: uppercase;
letter-spacing: 1px;
border-radius: 50px;
display: flex;
align-items: center;
justify-content: center;
gap: 10px;
box-shadow: 0 4px 10px rgba(111, 66, 193, 0.3);
}
button:hover {
transform: translateY(-2px);
box-shadow: 0 6px 15px rgba(111, 66, 193, 0.5);
background: linear-gradient(135deg, var(--hover-color), var(--primary-color));
}
button:active {
transform: translateY(1px);
}
#send-button {
background: linear-gradient(135deg, #2ecc71, #27ae60);
padding: 10px 20px;
font-size: 14px;
flex-shrink: 0;
}
#send-button:hover {
background: linear-gradient(135deg, #27ae60, #229954);
}
#end-session-button {
background: linear-gradient(135deg, #4a9eff, #3a7ed8);
padding: 8px 16px;
font-size: 13px;
}
#end-session-button:hover {
background: linear-gradient(135deg, #3a7ed8, #2a5eb8);
}
#audio-output {
display: none;
}
.icon-with-spinner {
display: flex;
align-items: center;
justify-content: center;
gap: 12px;
min-width: 180px;
}
.spinner {
width: 20px;
height: 20px;
border: 2px solid #ffffff;
border-top-color: transparent;
border-radius: 50%;
animation: spin 1s linear infinite;
flex-shrink: 0;
}
@keyframes spin {
to {
transform: rotate(360deg);
}
}
.audio-visualizer {
display: flex;
align-items: center;
justify-content: center;
gap: 5px;
min-width: 80px;
height: 25px;
}
.visualizer-bar {
width: 4px;
height: 100%;
background-color: rgba(255, 255, 255, 0.7);
border-radius: 2px;
transform-origin: bottom;
transform: scaleY(0.1);
transition: transform 0.1s ease;
}
.toast {
position: fixed;
top: 20px;
left: 50%;
transform: translateX(-50%);
padding: 16px 24px;
border-radius: 8px;
font-size: 14px;
z-index: 1000;
display: none;
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.3);
}
.toast.error {
background-color: #f44336;
color: white;
}
.toast.warning {
background-color: #ff9800;
color: white;
}
.toast.success {
background-color: #4caf50;
color: white;
}
.status-indicator {
display: inline-flex;
align-items: center;
margin-top: 10px;
font-size: 14px;
color: #aaa;
}
.status-dot {
width: 8px;
height: 8px;
border-radius: 50%;
margin-right: 8px;
}
.status-dot.connected {
background-color: #4caf50;
}
.status-dot.disconnected {
background-color: #f44336;
}
.status-dot.connecting {
background-color: #ff9800;
animation: pulse 1.5s infinite;
}
@keyframes pulse {
0% {
opacity: 0.6;
}
50% {
opacity: 1;
}
100% {
opacity: 0.6;
}
}
.user-avatar {
width: 40px;
height: 40px;
background: linear-gradient(135deg, var(--primary-color), var(--secondary-color));
border-radius: 50%;
display: flex;
align-items: center;
justify-content: center;
font-size: 20px;
font-weight: bold;
color: white;
}
</style>
</head>
<body>
<div id="error-toast" class="toast"></div>
<div class="container">
<div class="header">
<div class="logo">
<div class="user-avatar" id="user-avatar">๐ค</div>
<h1>Personal AI Assistant</h1>
</div>
<div class="status-indicator">
<div id="status-dot" class="status-dot disconnected"></div>
<span id="status-text">์ฐ๊ฒฐ ๋๊ธฐ ์ค</span>
</div>
</div>
<div class="main-content">
<div class="sidebar">
<div class="settings-section">
<h3 style="margin: 0 0 15px 0; color: var(--primary-color);">์ค์ </h3>
<div class="settings-grid">
<div class="setting-item">
<span class="setting-label">์น ๊ฒ์</span>
<div id="search-toggle" class="toggle-switch">
<div class="toggle-slider"></div>
</div>
</div>
</div>
<div class="text-input-section">
<label for="user-name" class="setting-label">์ฌ์ฉ์ ์ด๋ฆ:</label>
<input type="text" id="user-name" placeholder="์ด๋ฆ์ ์
๋ ฅํ์ธ์..." />
</div>
</div>
<div class="memory-section">
<h3 style="margin: 0 0 15px 0; color: var(--memory-color);">๊ธฐ์ต๋ ์ ๋ณด</h3>
<div id="memory-list"></div>
</div>
<div class="history-section">
<h3 style="margin: 0 0 15px 0; color: var(--primary-color);">๋ํ ๊ธฐ๋ก</h3>
<div id="history-list"></div>
</div>
<div class="controls">
<button id="start-button">๋ํ ์์</button>
<button id="end-session-button" style="display: none;">๊ธฐ์ต ์
๋ฐ์ดํธ</button>
</div>
</div>
<div class="chat-section">
<div class="chat-container">
<h3 style="margin: 0 0 15px 0; color: var(--primary-color);">๋ํ</h3>
<div class="chat-messages" id="chat-messages"></div>
<div class="text-input-section" style="margin-top: 10px;">
<div style="display: flex; gap: 10px;">
<input type="text" id="text-input" placeholder="ํ
์คํธ ๋ฉ์์ง๋ฅผ ์
๋ ฅํ์ธ์..." style="flex-grow: 1;" />
<button id="send-button" style="display: none;">์ ์ก</button>
</div>
</div>
</div>
</div>
</div>
</div>
<audio id="audio-output"></audio>
<script>
let peerConnection;
let webrtc_id;
let webSearchEnabled = false;
let currentSessionId = null;
let userName = localStorage.getItem('userName') || '';
let userMemories = {};
const audioOutput = document.getElementById('audio-output');
const startButton = document.getElementById('start-button');
const endSessionButton = document.getElementById('end-session-button');
const sendButton = document.getElementById('send-button');
const chatMessages = document.getElementById('chat-messages');
const statusDot = document.getElementById('status-dot');
const statusText = document.getElementById('status-text');
const searchToggle = document.getElementById('search-toggle');
const textInput = document.getElementById('text-input');
const historyList = document.getElementById('history-list');
const memoryList = document.getElementById('memory-list');
const userNameInput = document.getElementById('user-name');
const userAvatar = document.getElementById('user-avatar');
let audioLevel = 0;
let animationFrame;
let audioContext, analyser, audioSource;
let dataChannel = null;
let isVoiceActive = false;
// Initialize user name
userNameInput.value = userName;
if (userName) {
userAvatar.textContent = userName.charAt(0).toUpperCase();
}
userNameInput.addEventListener('input', () => {
userName = userNameInput.value;
localStorage.setItem('userName', userName);
if (userName) {
userAvatar.textContent = userName.charAt(0).toUpperCase();
} else {
userAvatar.textContent = '๐ค';
}
});
// Start new session
async function startNewSession() {
const response = await fetch('/session/new', { method: 'POST' });
const data = await response.json();
currentSessionId = data.session_id;
console.log('New session started:', currentSessionId);
loadHistory();
loadMemories();
}
// Load memories
async function loadMemories() {
try {
const response = await fetch('/memory/all');
const memories = await response.json();
userMemories = {};
memoryList.innerHTML = '';
memories.forEach(memory => {
if (!userMemories[memory.category]) {
userMemories[memory.category] = [];
}
userMemories[memory.category].push(memory.content);
const item = document.createElement('div');
item.className = 'memory-item';
item.innerHTML = `
<div class="memory-category">${memory.category}</div>
<div class="memory-content">${memory.content}</div>
`;
memoryList.appendChild(item);
});
console.log('Loaded memories:', userMemories);
} catch (error) {
console.error('Failed to load memories:', error);
}
}
// End session and update memories
async function endSession() {
if (!currentSessionId) return;
try {
addMessage('memory-update', '๋ํ ๋ด์ฉ์ ๋ถ์ํ์ฌ ๊ธฐ์ต์ ์
๋ฐ์ดํธํ๊ณ ์์ต๋๋ค...');
const response = await fetch('/session/end', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ session_id: currentSessionId })
});
const result = await response.json();
if (result.status === 'ok') {
showToast('๊ธฐ์ต์ด ์ฑ๊ณต์ ์ผ๋ก ์
๋ฐ์ดํธ๋์์ต๋๋ค.', 'success');
loadMemories();
startNewSession();
}
} catch (error) {
console.error('Failed to end session:', error);
showError('๊ธฐ์ต ์
๋ฐ์ดํธ ์ค ์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค.');
}
}
// Load conversation history
async function loadHistory() {
try {
const response = await fetch('/history/recent');
const conversations = await response.json();
historyList.innerHTML = '';
conversations.forEach(conv => {
const item = document.createElement('div');
item.className = 'history-item';
item.innerHTML = `
<div class="history-date">${new Date(conv.created_at).toLocaleString()}</div>
<div class="history-preview">${conv.summary || '๋ํ ์์'}</div>
`;
item.onclick = () => loadConversation(conv.id);
historyList.appendChild(item);
});
} catch (error) {
console.error('Failed to load history:', error);
}
}
// Load specific conversation
async function loadConversation(sessionId) {
try {
const response = await fetch(`/history/${sessionId}`);
const messages = await response.json();
chatMessages.innerHTML = '';
messages.forEach(msg => {
addMessage(msg.role, msg.content, false);
});
} catch (error) {
console.error('Failed to load conversation:', error);
}
}
// Web search toggle functionality
searchToggle.addEventListener('click', () => {
webSearchEnabled = !webSearchEnabled;
searchToggle.classList.toggle('active', webSearchEnabled);
console.log('Web search enabled:', webSearchEnabled);
});
// Text input handling
textInput.addEventListener('keypress', (e) => {
if (e.key === 'Enter' && !e.shiftKey) {
e.preventDefault();
sendTextMessage();
}
});
sendButton.addEventListener('click', sendTextMessage);
endSessionButton.addEventListener('click', endSession);
async function sendTextMessage() {
const message = textInput.value.trim();
if (!message) return;
// Check for stop words
const stopWords = ["์ค๋จ", "๊ทธ๋ง", "์คํฑ", "stop", "๋ฅ์ณ", "๋ฉ์ถฐ", "์ค์ง"];
if (stopWords.some(word => message.toLowerCase().includes(word))) {
addMessage('assistant', '๋ํ๋ฅผ ์ค๋จํฉ๋๋ค.');
return;
}
// Add user message to chat
addMessage('user', message);
textInput.value = '';
// Show sending indicator
const typingIndicator = document.createElement('div');
typingIndicator.classList.add('message', 'assistant');
typingIndicator.textContent = '์
๋ ฅ ์ค...';
typingIndicator.id = 'typing-indicator';
chatMessages.appendChild(typingIndicator);
chatMessages.scrollTop = chatMessages.scrollHeight;
try {
// Send to text chat endpoint
const response = await fetch('/chat/text', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
message: message,
web_search_enabled: webSearchEnabled,
session_id: currentSessionId,
user_name: userName,
memories: userMemories
})
});
const data = await response.json();
// Remove typing indicator
const indicator = document.getElementById('typing-indicator');
if (indicator) indicator.remove();
if (data.error) {
showError(data.error);
} else {
// Add assistant response
let content = data.response;
if (data.detected_language) {
content += ` <span class="language-info">[${data.detected_language}]</span>`;
}
addMessage('assistant', content);
}
} catch (error) {
console.error('Error sending text message:', error);
const indicator = document.getElementById('typing-indicator');
if (indicator) indicator.remove();
showError('๋ฉ์์ง ์ ์ก ์ค ์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค.');
}
}
function updateStatus(state) {
statusDot.className = 'status-dot ' + state;
if (state === 'connected') {
statusText.textContent = '์ฐ๊ฒฐ๋จ';
sendButton.style.display = 'block';
endSessionButton.style.display = 'block';
isVoiceActive = true;
} else if (state === 'connecting') {
statusText.textContent = '์ฐ๊ฒฐ ์ค...';
sendButton.style.display = 'none';
endSessionButton.style.display = 'none';
} else {
statusText.textContent = '์ฐ๊ฒฐ ๋๊ธฐ ์ค';
sendButton.style.display = 'block';
endSessionButton.style.display = 'block';
isVoiceActive = false;
}
}
function showToast(message, type = 'info') {
const toast = document.getElementById('error-toast');
toast.textContent = message;
toast.className = `toast ${type}`;
toast.style.display = 'block';
setTimeout(() => {
toast.style.display = 'none';
}, 5000);
}
function showError(message) {
showToast(message, 'error');
}
function updateButtonState() {
const button = document.getElementById('start-button');
if (peerConnection && (peerConnection.connectionState === 'connecting' || peerConnection.connectionState === 'new')) {
button.innerHTML = `
<div class="icon-with-spinner">
<div class="spinner"></div>
<span>์ฐ๊ฒฐ ์ค...</span>
</div>
`;
updateStatus('connecting');
} else if (peerConnection && peerConnection.connectionState === 'connected') {
button.innerHTML = `
<div class="icon-with-spinner">
<div class="audio-visualizer" id="audio-visualizer">
<div class="visualizer-bar"></div>
<div class="visualizer-bar"></div>
<div class="visualizer-bar"></div>
<div class="visualizer-bar"></div>
<div class="visualizer-bar"></div>
</div>
<span>๋ํ ์ข
๋ฃ</span>
</div>
`;
updateStatus('connected');
} else {
button.innerHTML = '๋ํ ์์';
updateStatus('disconnected');
}
}
function setupAudioVisualization(stream) {
audioContext = new (window.AudioContext || window.webkitAudioContext)();
analyser = audioContext.createAnalyser();
audioSource = audioContext.createMediaStreamSource(stream);
audioSource.connect(analyser);
analyser.fftSize = 256;
const bufferLength = analyser.frequencyBinCount;
const dataArray = new Uint8Array(bufferLength);
const visualizerBars = document.querySelectorAll('.visualizer-bar');
const barCount = visualizerBars.length;
function updateAudioLevel() {
analyser.getByteFrequencyData(dataArray);
for (let i = 0; i < barCount; i++) {
const start = Math.floor(i * (bufferLength / barCount));
const end = Math.floor((i + 1) * (bufferLength / barCount));
let sum = 0;
for (let j = start; j < end; j++) {
sum += dataArray[j];
}
const average = sum / (end - start) / 255;
const scaleY = 0.1 + average * 0.9;
visualizerBars[i].style.transform = `scaleY(${scaleY})`;
}
animationFrame = requestAnimationFrame(updateAudioLevel);
}
updateAudioLevel();
}
async function setupWebRTC() {
const config = __RTC_CONFIGURATION__;
peerConnection = new RTCPeerConnection(config);
const timeoutId = setTimeout(() => {
showToast("์ฐ๊ฒฐ์ด ํ์๋ณด๋ค ์ค๋ ๊ฑธ๋ฆฌ๊ณ ์์ต๋๋ค. VPN์ ์ฌ์ฉ ์ค์ด์ ๊ฐ์?", 'warning');
}, 5000);
try {
const stream = await navigator.mediaDevices.getUserMedia({
audio: true
});
setupAudioVisualization(stream);
stream.getTracks().forEach(track => {
peerConnection.addTrack(track, stream);
});
peerConnection.addEventListener('track', (evt) => {
if (audioOutput.srcObject !== evt.streams[0]) {
audioOutput.srcObject = evt.streams[0];
audioOutput.play();
}
});
// Create data channel for text messages
dataChannel = peerConnection.createDataChannel('text');
dataChannel.onopen = () => {
console.log('Data channel opened');
};
dataChannel.onmessage = (event) => {
const eventJson = JSON.parse(event.data);
if (eventJson.type === "error") {
showError(eventJson.message);
}
};
const offer = await peerConnection.createOffer();
await peerConnection.setLocalDescription(offer);
await new Promise((resolve) => {
if (peerConnection.iceGatheringState === "complete") {
resolve();
} else {
const checkState = () => {
if (peerConnection.iceGatheringState === "complete") {
peerConnection.removeEventListener("icegatheringstatechange", checkState);
resolve();
}
};
peerConnection.addEventListener("icegatheringstatechange", checkState);
}
});
peerConnection.addEventListener('connectionstatechange', () => {
console.log('connectionstatechange', peerConnection.connectionState);
if (peerConnection.connectionState === 'connected') {
clearTimeout(timeoutId);
const toast = document.getElementById('error-toast');
toast.style.display = 'none';
}
updateButtonState();
});
webrtc_id = Math.random().toString(36).substring(7);
const response = await fetch('/webrtc/offer', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
sdp: peerConnection.localDescription.sdp,
type: peerConnection.localDescription.type,
webrtc_id: webrtc_id,
web_search_enabled: webSearchEnabled,
session_id: currentSessionId,
user_name: userName,
memories: userMemories
})
});
const serverResponse = await response.json();
if (serverResponse.status === 'failed') {
showError(serverResponse.meta.error === 'concurrency_limit_reached'
? `๋๋ฌด ๋ง์ ์ฐ๊ฒฐ์
๋๋ค. ์ต๋ ํ๋๋ ${serverResponse.meta.limit} ์
๋๋ค.`
: serverResponse.meta.error);
stop();
return;
}
await peerConnection.setRemoteDescription(serverResponse);
const eventSource = new EventSource('/outputs?webrtc_id=' + webrtc_id);
eventSource.addEventListener("output", (event) => {
const eventJson = JSON.parse(event.data);
let content = eventJson.content;
if (eventJson.detected_language) {
content += ` <span class="language-info">[${eventJson.detected_language}]</span>`;
}
addMessage("assistant", content);
});
eventSource.addEventListener("search", (event) => {
const eventJson = JSON.parse(event.data);
if (eventJson.query) {
addMessage("search-result", `์น ๊ฒ์ ์ค: "${eventJson.query}"`);
}
});
} catch (err) {
clearTimeout(timeoutId);
console.error('Error setting up WebRTC:', err);
showError('์ฐ๊ฒฐ์ ์ค์ ํ์ง ๋ชปํ์ต๋๋ค. ๋ค์ ์๋ํด ์ฃผ์ธ์.');
stop();
}
}
function addMessage(role, content, save = true) {
const messageDiv = document.createElement('div');
messageDiv.classList.add('message', role);
if (content.includes('<span')) {
messageDiv.innerHTML = content;
} else {
messageDiv.textContent = content;
}
chatMessages.appendChild(messageDiv);
chatMessages.scrollTop = chatMessages.scrollHeight;
// Save message to database if save flag is true
if (save && currentSessionId && role !== 'memory-update' && role !== 'search-result') {
fetch('/message/save', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
session_id: currentSessionId,
role: role,
content: content
})
}).catch(error => console.error('Failed to save message:', error));
}
}
function stop() {
console.log('[STOP] Stopping connection...');
// Cancel animation frame first
if (animationFrame) {
cancelAnimationFrame(animationFrame);
animationFrame = null;
}
// Close audio context
if (audioContext) {
audioContext.close();
audioContext = null;
analyser = null;
audioSource = null;
}
// Close data channel
if (dataChannel) {
dataChannel.close();
dataChannel = null;
}
// Close peer connection
if (peerConnection) {
console.log('[STOP] Current connection state:', peerConnection.connectionState);
// Stop all transceivers
if (peerConnection.getTransceivers) {
peerConnection.getTransceivers().forEach(transceiver => {
if (transceiver.stop) {
transceiver.stop();
}
});
}
// Stop all senders
if (peerConnection.getSenders) {
peerConnection.getSenders().forEach(sender => {
if (sender.track) {
sender.track.stop();
}
});
}
// Stop all receivers
if (peerConnection.getReceivers) {
peerConnection.getReceivers().forEach(receiver => {
if (receiver.track) {
receiver.track.stop();
}
});
}
// Close the connection
peerConnection.close();
// Clear the reference
peerConnection = null;
console.log('[STOP] Connection closed');
}
// Reset audio level
audioLevel = 0;
isVoiceActive = false;
// Update UI
updateButtonState();
// Clear any existing webrtc_id
if (webrtc_id) {
console.log('[STOP] Clearing webrtc_id:', webrtc_id);
webrtc_id = null;
}
}
startButton.addEventListener('click', () => {
console.log('clicked');
console.log(peerConnection, peerConnection?.connectionState);
if (!peerConnection || peerConnection.connectionState !== 'connected') {
setupWebRTC();
} else {
console.log('stopping');
stop();
}
});
// Initialize on page load
window.addEventListener('DOMContentLoaded', () => {
sendButton.style.display = 'block';
endSessionButton.style.display = 'block';
startNewSession();
loadHistory();
loadMemories();
});
</script>
</body>
</html>"""
class BraveSearchClient:
"""Brave Search API client"""
def __init__(self, api_key: str):
self.api_key = api_key
self.base_url = "https://api.search.brave.com/res/v1/web/search"
async def search(self, query: str, count: int = 10) -> List[Dict]:
"""Perform a web search using Brave Search API"""
if not self.api_key:
return []
headers = {
"Accept": "application/json",
"X-Subscription-Token": self.api_key
}
params = {
"q": query,
"count": count,
"lang": "ko"
}
async with httpx.AsyncClient() as client:
try:
response = await client.get(self.base_url, headers=headers, params=params)
response.raise_for_status()
data = response.json()
results = []
if "web" in data and "results" in data["web"]:
for result in data["web"]["results"][:count]:
results.append({
"title": result.get("title", ""),
"url": result.get("url", ""),
"description": result.get("description", "")
})
return results
except Exception as e:
print(f"Brave Search error: {e}")
return []
# Database helper class
class PersonalAssistantDB:
"""Database manager for personal assistant"""
@staticmethod
async def init():
"""Initialize database tables"""
async with aiosqlite.connect(DB_PATH) as db:
# Conversations table
await db.execute("""
CREATE TABLE IF NOT EXISTS conversations (
id TEXT PRIMARY KEY,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
summary TEXT
)
""")
# Messages table
await db.execute("""
CREATE TABLE IF NOT EXISTS messages (
id INTEGER PRIMARY KEY AUTOINCREMENT,
session_id TEXT NOT NULL,
role TEXT NOT NULL,
content TEXT NOT NULL,
detected_language TEXT,
timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY (session_id) REFERENCES conversations(id)
)
""")
# User memories table - stores personal information
await db.execute("""
CREATE TABLE IF NOT EXISTS user_memories (
id INTEGER PRIMARY KEY AUTOINCREMENT,
category TEXT NOT NULL,
content TEXT NOT NULL,
confidence REAL DEFAULT 1.0,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
source_session_id TEXT,
FOREIGN KEY (source_session_id) REFERENCES conversations(id)
)
""")
# Create indexes for better performance
await db.execute("CREATE INDEX IF NOT EXISTS idx_memories_category ON user_memories(category)")
await db.execute("CREATE INDEX IF NOT EXISTS idx_messages_session ON messages(session_id)")
await db.commit()
@staticmethod
async def create_session(session_id: str):
"""Create a new conversation session"""
async with aiosqlite.connect(DB_PATH) as db:
await db.execute(
"INSERT INTO conversations (id) VALUES (?)",
(session_id,)
)
await db.commit()
@staticmethod
async def save_message(session_id: str, role: str, content: str):
"""Save a message to the database"""
# Check for None or empty content
if not content:
print(f"[SAVE_MESSAGE] Empty content for {role} message, skipping")
return
# Detect language
detected_language = None
try:
if content and len(content) > 10:
detected_language = detect(content)
except (LangDetectException, Exception) as e:
print(f"Language detection error: {e}")
async with aiosqlite.connect(DB_PATH) as db:
await db.execute(
"""INSERT INTO messages (session_id, role, content, detected_language)
VALUES (?, ?, ?, ?)""",
(session_id, role, content, detected_language)
)
# Update conversation's updated_at timestamp
await db.execute(
"UPDATE conversations SET updated_at = CURRENT_TIMESTAMP WHERE id = ?",
(session_id,)
)
# Update conversation summary (use first user message as summary)
if role == "user":
cursor = await db.execute(
"SELECT summary FROM conversations WHERE id = ?",
(session_id,)
)
row = await cursor.fetchone()
if row and not row[0]:
summary = content[:100] + "..." if len(content) > 100 else content
await db.execute(
"UPDATE conversations SET summary = ? WHERE id = ?",
(summary, session_id)
)
await db.commit()
@staticmethod
async def get_recent_conversations(limit: int = 10):
"""Get recent conversations"""
async with aiosqlite.connect(DB_PATH) as db:
cursor = await db.execute(
"""SELECT id, created_at, summary
FROM conversations
ORDER BY updated_at DESC
LIMIT ?""",
(limit,)
)
rows = await cursor.fetchall()
return [
{
"id": row[0],
"created_at": row[1],
"summary": row[2] or "์ ๋ํ"
}
for row in rows
]
@staticmethod
async def get_conversation_messages(session_id: str):
"""Get all messages for a conversation"""
async with aiosqlite.connect(DB_PATH) as db:
cursor = await db.execute(
"""SELECT role, content, detected_language, timestamp
FROM messages
WHERE session_id = ?
ORDER BY timestamp ASC""",
(session_id,)
)
rows = await cursor.fetchall()
return [
{
"role": row[0],
"content": row[1],
"detected_language": row[2],
"timestamp": row[3]
}
for row in rows
]
@staticmethod
async def save_memory(category: str, content: str, session_id: str = None, confidence: float = 1.0):
"""Save or update a user memory"""
async with aiosqlite.connect(DB_PATH) as db:
# Check if similar memory exists
cursor = await db.execute(
"""SELECT id, content FROM user_memories
WHERE category = ? AND content LIKE ?
LIMIT 1""",
(category, f"%{content[:20]}%")
)
existing = await cursor.fetchone()
if existing:
# Update existing memory
await db.execute(
"""UPDATE user_memories
SET content = ?, confidence = ?, updated_at = CURRENT_TIMESTAMP,
source_session_id = ?
WHERE id = ?""",
(content, confidence, session_id, existing[0])
)
else:
# Insert new memory
await db.execute(
"""INSERT INTO user_memories (category, content, confidence, source_session_id)
VALUES (?, ?, ?, ?)""",
(category, content, confidence, session_id)
)
await db.commit()
@staticmethod
async def get_all_memories():
"""Get all user memories"""
async with aiosqlite.connect(DB_PATH) as db:
cursor = await db.execute(
"""SELECT category, content, confidence, updated_at
FROM user_memories
ORDER BY category, updated_at DESC"""
)
rows = await cursor.fetchall()
return [
{
"category": row[0],
"content": row[1],
"confidence": row[2],
"updated_at": row[3]
}
for row in rows
]
@staticmethod
async def extract_and_save_memories(session_id: str):
"""Extract memories from conversation and save them"""
# Get all messages from the session
messages = await PersonalAssistantDB.get_conversation_messages(session_id)
if not messages:
return
# Prepare conversation text for analysis
conversation_text = "\n".join([
f"{msg['role']}: {msg['content']}"
for msg in messages if msg.get('content')
])
# Use GPT to extract memories
client = openai.AsyncOpenAI()
try:
response = await client.chat.completions.create(
model="gpt-4.1-mini",
messages=[
{
"role": "system",
"content": """You are a memory extraction system. Extract personal information from conversations.
Categories to extract:
- personal_info: ์ด๋ฆ, ๋์ด, ์ฑ๋ณ, ์ง์
, ๊ฑฐ์ฃผ์ง
- preferences: ์ข์ํ๋ ๊ฒ, ์ซ์ดํ๋ ๊ฒ, ์ทจํฅ
- important_dates: ์์ผ, ๊ธฐ๋
์ผ, ์ค์ํ ๋ ์ง
- relationships: ๊ฐ์กฑ, ์น๊ตฌ, ๋๋ฃ ๊ด๊ณ
- hobbies: ์ทจ๋ฏธ, ๊ด์ฌ์ฌ
- health: ๊ฑด๊ฐ ์ํ, ์๋ ๋ฅด๊ธฐ, ์๋ฃ ์ ๋ณด
- goals: ๋ชฉํ, ๊ณํ, ๊ฟ
- routines: ์ผ์, ์ต๊ด, ๋ฃจํด
- work: ์ง์ฅ, ์
๋ฌด, ํ๋ก์ ํธ
- education: ํ๋ ฅ, ์ ๊ณต, ํ์ต
Return as JSON array with format:
[
{
"category": "category_name",
"content": "extracted information in Korean",
"confidence": 0.0-1.0
}
]
Only extract clear, factual information. Do not make assumptions."""
},
{
"role": "user",
"content": f"Extract memories from this conversation:\n\n{conversation_text}"
}
],
temperature=0.3,
max_tokens=2000
)
# Parse and save memories
memories_text = response.choices[0].message.content
# Extract JSON from response
import re
json_match = re.search(r'\[.*\]', memories_text, re.DOTALL)
if json_match:
memories = json.loads(json_match.group())
for memory in memories:
if memory.get('content') and len(memory['content']) > 5:
await PersonalAssistantDB.save_memory(
category=memory.get('category', 'general'),
content=memory['content'],
session_id=session_id,
confidence=memory.get('confidence', 0.8)
)
print(f"Extracted and saved {len(memories)} memories from session {session_id}")
except Exception as e:
print(f"Error extracting memories: {e}")
# Initialize search client globally
brave_api_key = os.getenv("BSEARCH_API")
search_client = BraveSearchClient(brave_api_key) if brave_api_key else None
print(f"Search client initialized: {search_client is not None}, API key present: {bool(brave_api_key)}")
# Store connection settings
connection_settings = {}
# Initialize OpenAI client for text chat
client = openai.AsyncOpenAI()
def update_chatbot(chatbot: list[dict], response: ResponseAudioTranscriptDoneEvent):
chatbot.append({"role": "assistant", "content": response.transcript})
return chatbot
def format_memories_for_prompt(memories: Dict[str, List[str]]) -> str:
"""Format memories for inclusion in system prompt"""
if not memories:
return ""
memory_text = "\n\n=== ๊ธฐ์ต๋ ์ ๋ณด ===\n"
for category, items in memories.items():
if items and isinstance(items, list):
memory_text += f"\n[{category}]\n"
for item in items:
if item: # Check if item is not None or empty
memory_text += f"- {item}\n"
return memory_text
async def process_text_chat(message: str, web_search_enabled: bool, session_id: str,
user_name: str = "", memories: Dict = None) -> Dict[str, str]:
"""Process text chat using GPT-4o-mini model"""
try:
# Check for empty or None message
if not message:
return {"error": "๋ฉ์์ง๊ฐ ๋น์ด์์ต๋๋ค."}
# Check for stop words
stop_words = ["์ค๋จ", "๊ทธ๋ง", "์คํฑ", "stop", "๋ฅ์ณ", "๋ฉ์ถฐ", "์ค์ง"]
if any(word in message.lower() for word in stop_words):
return {
"response": "๋ํ๋ฅผ ์ค๋จํฉ๋๋ค.",
"detected_language": "ko"
}
# Build system prompt with memories
base_prompt = f"""You are a personal AI assistant for {user_name if user_name else 'the user'}.
You remember all previous conversations and personal information about the user.
Be friendly, helpful, and personalized in your responses.
Always use the information you remember to make conversations more personal and relevant.
IMPORTANT: Give only ONE response. Do not repeat or give multiple answers."""
# Add memories to prompt
if memories:
memory_text = format_memories_for_prompt(memories)
base_prompt += memory_text
messages = [{"role": "system", "content": base_prompt}]
# Handle web search if enabled
if web_search_enabled and search_client and message:
search_keywords = ["๋ ์จ", "๊ธฐ์จ", "๋น", "๋", "๋ด์ค", "์์", "ํ์ฌ", "์ต๊ทผ",
"์ค๋", "์ง๊ธ", "๊ฐ๊ฒฉ", "ํ์จ", "์ฃผ๊ฐ", "weather", "news",
"current", "today", "price", "2024", "2025"]
should_search = any(keyword in message.lower() for keyword in search_keywords)
if should_search:
search_results = await search_client.search(message)
if search_results:
search_context = "์น ๊ฒ์ ๊ฒฐ๊ณผ:\n\n"
for i, result in enumerate(search_results[:5], 1):
search_context += f"{i}. {result['title']}\n{result['description']}\n\n"
messages.append({
"role": "system",
"content": "๋ค์ ์น ๊ฒ์ ๊ฒฐ๊ณผ๋ฅผ ์ฐธ๊ณ ํ์ฌ ๋ต๋ณํ์ธ์:\n\n" + search_context
})
messages.append({"role": "user", "content": message})
# Call GPT-4o-mini
response = await client.chat.completions.create(
model="gpt-4.1-mini",
messages=messages,
temperature=0.7,
max_tokens=2000
)
response_text = response.choices[0].message.content
# Detect language
detected_language = None
try:
if response_text and len(response_text) > 10:
detected_language = detect(response_text)
except:
pass
# Save messages to database
if session_id:
await PersonalAssistantDB.save_message(session_id, "user", message)
await PersonalAssistantDB.save_message(session_id, "assistant", response_text)
return {
"response": response_text,
"detected_language": detected_language
}
except Exception as e:
print(f"Error in text chat: {e}")
return {"error": str(e)}
class OpenAIHandler(AsyncStreamHandler):
def __init__(self, web_search_enabled: bool = False, webrtc_id: str = None,
session_id: str = None, user_name: str = "", memories: Dict = None) -> None:
super().__init__(
expected_layout="mono",
output_sample_rate=SAMPLE_RATE,
output_frame_size=480,
input_sample_rate=SAMPLE_RATE,
)
self.connection = None
self.output_queue = asyncio.Queue()
self.search_client = search_client
self.function_call_in_progress = False
self.current_function_args = ""
self.current_call_id = None
self.webrtc_id = webrtc_id
self.web_search_enabled = web_search_enabled
self.session_id = session_id
self.user_name = user_name
self.memories = memories or {}
self.is_responding = False # Track if already responding
self.should_stop = False # Track if conversation should stop
print(f"[INIT] Handler created with web_search={web_search_enabled}, session_id={session_id}, user={user_name}")
def copy(self):
if connection_settings:
recent_ids = sorted(connection_settings.keys(),
key=lambda k: connection_settings[k].get('timestamp', 0),
reverse=True)
if recent_ids:
recent_id = recent_ids[0]
settings = connection_settings[recent_id]
print(f"[COPY] Copying settings from {recent_id}:")
return OpenAIHandler(
web_search_enabled=settings.get('web_search_enabled', False),
webrtc_id=recent_id,
session_id=settings.get('session_id'),
user_name=settings.get('user_name', ''),
memories=settings.get('memories', {})
)
print(f"[COPY] No settings found, creating default handler")
return OpenAIHandler(web_search_enabled=False)
async def search_web(self, query: str) -> str:
"""Perform web search and return formatted results"""
if not self.search_client or not self.web_search_enabled:
return "์น ๊ฒ์์ด ๋นํ์ฑํ๋์ด ์์ต๋๋ค."
print(f"Searching web for: {query}")
results = await self.search_client.search(query)
if not results:
return f"'{query}'์ ๋ํ ๊ฒ์ ๊ฒฐ๊ณผ๋ฅผ ์ฐพ์ ์ ์์ต๋๋ค."
formatted_results = []
for i, result in enumerate(results, 1):
formatted_results.append(
f"{i}. {result['title']}\n"
f" URL: {result['url']}\n"
f" {result['description']}\n"
)
return f"์น ๊ฒ์ ๊ฒฐ๊ณผ '{query}':\n\n" + "\n".join(formatted_results)
async def process_text_message(self, message: str):
"""Process text message from user"""
if self.connection:
await self.connection.conversation.item.create(
item={
"type": "message",
"role": "user",
"content": [{"type": "input_text", "text": message}]
}
)
await self.connection.response.create()
async def start_up(self):
"""Connect to realtime API"""
if connection_settings and self.webrtc_id:
if self.webrtc_id in connection_settings:
settings = connection_settings[self.webrtc_id]
self.web_search_enabled = settings.get('web_search_enabled', False)
self.session_id = settings.get('session_id')
self.user_name = settings.get('user_name', '')
self.memories = settings.get('memories', {})
print(f"[START_UP] Updated settings from storage for {self.webrtc_id}")
self.client = openai.AsyncOpenAI()
print(f"[REALTIME API] Connecting...")
# Build system prompt with memories
base_instructions = f"""You are a personal AI assistant for {self.user_name if self.user_name else 'the user'}.
You remember all previous conversations and personal information about the user.
Be friendly, helpful, and personalized in your responses.
Always use the information you remember to make conversations more personal and relevant.
IMPORTANT: Give only ONE response per user input. Do not repeat yourself or give multiple answers."""
# Add memories to prompt
if self.memories:
memory_text = format_memories_for_prompt(self.memories)
base_instructions += memory_text
# Define the web search function
tools = []
if self.web_search_enabled and self.search_client:
tools = [{
"type": "function",
"function": {
"name": "web_search",
"description": "Search the web for current information. Use this for weather, news, prices, current events, or any time-sensitive topics.",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "The search query"
}
},
"required": ["query"]
}
}
}]
search_instructions = (
"\n\nYou have web search capabilities. "
"Use web_search for current information like weather, news, prices, etc."
)
instructions = base_instructions + search_instructions
else:
instructions = base_instructions
async with self.client.beta.realtime.connect(
model="gpt-4o-mini-realtime-preview-2024-12-17"
) as conn:
session_update = {
"turn_detection": {
"type": "server_vad",
"threshold": 0.5,
"prefix_padding_ms": 300,
"silence_duration_ms": 200
},
"instructions": instructions,
"tools": tools,
"tool_choice": "auto" if tools else "none",
"temperature": 0.7,
"max_response_output_tokens": 4096,
"modalities": ["text", "audio"],
"voice": "alloy"
}
try:
await conn.session.update(session=session_update)
self.connection = conn
print(f"Connected with tools: {len(tools)} functions")
print(f"Session update successful")
except Exception as e:
print(f"Error updating session: {e}")
raise
async for event in self.connection:
# Debug log for all events
if hasattr(event, 'type'):
if event.type not in ["response.audio.delta", "response.audio.done"]:
print(f"[EVENT] Type: {event.type}")
# Handle user input audio transcription
if event.type == "conversation.item.input_audio_transcription.completed":
if hasattr(event, 'transcript') and event.transcript:
user_text = event.transcript.lower()
stop_words = ["์ค๋จ", "๊ทธ๋ง", "์คํฑ", "stop", "๋ฅ์ณ", "๋ฉ์ถฐ", "์ค์ง"]
if any(word in user_text for word in stop_words):
print(f"[STOP DETECTED] User said: {event.transcript}")
self.should_stop = True
if self.connection:
try:
await self.connection.response.cancel()
except:
pass
continue
# Save user message to database
if self.session_id:
await PersonalAssistantDB.save_message(self.session_id, "user", event.transcript)
# Handle user transcription for stop detection (alternative event)
elif event.type == "conversation.item.created":
if hasattr(event, 'item') and hasattr(event.item, 'role') and event.item.role == "user":
if hasattr(event.item, 'content') and event.item.content:
for content_item in event.item.content:
if hasattr(content_item, 'transcript') and content_item.transcript:
user_text = content_item.transcript.lower()
stop_words = ["์ค๋จ", "๊ทธ๋ง", "์คํฑ", "stop", "๋ฅ์ณ", "๋ฉ์ถฐ", "์ค์ง"]
if any(word in user_text for word in stop_words):
print(f"[STOP DETECTED] User said: {content_item.transcript}")
self.should_stop = True
if self.connection:
try:
await self.connection.response.cancel()
except:
pass
continue
# Save user message to database
if self.session_id:
await PersonalAssistantDB.save_message(self.session_id, "user", content_item.transcript)
elif event.type == "response.audio_transcript.done":
# Prevent multiple responses
if self.is_responding:
print("[DUPLICATE RESPONSE] Skipping duplicate response")
continue
self.is_responding = True
print(f"[RESPONSE] Transcript: {event.transcript[:100] if event.transcript else 'None'}...")
# Detect language
detected_language = None
try:
if event.transcript and len(event.transcript) > 10:
detected_language = detect(event.transcript)
except Exception as e:
print(f"Language detection error: {e}")
# Save to database
if self.session_id and event.transcript:
await PersonalAssistantDB.save_message(self.session_id, "assistant", event.transcript)
output_data = {
"event": event,
"detected_language": detected_language
}
await self.output_queue.put(AdditionalOutputs(output_data))
elif event.type == "response.done":
# Reset responding flag when response is complete
self.is_responding = False
self.should_stop = False
print("[RESPONSE DONE] Response completed")
elif event.type == "response.audio.delta":
# Check if we should stop
if self.should_stop:
continue
if hasattr(event, 'delta'):
await self.output_queue.put(
(
self.output_sample_rate,
np.frombuffer(
base64.b64decode(event.delta), dtype=np.int16
).reshape(1, -1),
),
)
# Handle errors
elif event.type == "error":
print(f"[ERROR] {event}")
self.is_responding = False
# Handle function calls
elif event.type == "response.function_call_arguments.start":
print(f"Function call started")
self.function_call_in_progress = True
self.current_function_args = ""
self.current_call_id = getattr(event, 'call_id', None)
elif event.type == "response.function_call_arguments.delta":
if self.function_call_in_progress:
self.current_function_args += event.delta
elif event.type == "response.function_call_arguments.done":
if self.function_call_in_progress:
print(f"Function call done, args: {self.current_function_args}")
try:
args = json.loads(self.current_function_args)
query = args.get("query", "")
# Emit search event to client
await self.output_queue.put(AdditionalOutputs({
"type": "search",
"query": query
}))
# Perform the search
search_results = await self.search_web(query)
print(f"Search results length: {len(search_results)}")
# Send function result back to the model
if self.connection and self.current_call_id:
await self.connection.conversation.item.create(
item={
"type": "function_call_output",
"call_id": self.current_call_id,
"output": search_results
}
)
await self.connection.response.create()
except Exception as e:
print(f"Function call error: {e}")
finally:
self.function_call_in_progress = False
self.current_function_args = ""
self.current_call_id = None
async def receive(self, frame: tuple[int, np.ndarray]) -> None:
if not self.connection:
print(f"[RECEIVE] No connection, skipping")
return
try:
if frame is None or len(frame) < 2:
print(f"[RECEIVE] Invalid frame")
return
_, array = frame
if array is None:
print(f"[RECEIVE] Null array")
return
array = array.squeeze()
audio_message = base64.b64encode(array.tobytes()).decode("utf-8")
await self.connection.input_audio_buffer.append(audio=audio_message)
except Exception as e:
print(f"Error in receive: {e}")
async def emit(self) -> tuple[int, np.ndarray] | AdditionalOutputs | None:
item = await wait_for_item(self.output_queue)
if isinstance(item, dict) and item.get('type') == 'text_message':
await self.process_text_message(item['content'])
return None
return item
async def shutdown(self) -> None:
print(f"[SHUTDOWN] Called")
if self.connection:
await self.connection.close()
self.connection = None
print("[REALTIME API] Connection closed")
# Create initial handler instance
handler = OpenAIHandler(web_search_enabled=False)
# Create components
chatbot = gr.Chatbot(type="messages")
# Create stream with handler instance
stream = Stream(
handler,
mode="send-receive",
modality="audio",
additional_inputs=[chatbot],
additional_outputs=[chatbot],
additional_outputs_handler=update_chatbot,
rtc_configuration=get_twilio_turn_credentials() if get_space() else None,
concurrency_limit=5 if get_space() else None,
time_limit=300 if get_space() else None,
)
app = FastAPI()
# Mount stream
stream.mount(app)
# Initialize database on startup
@app.on_event("startup")
async def startup_event():
try:
await PersonalAssistantDB.init()
print(f"Database initialized at: {DB_PATH}")
print(f"Persistent directory: {PERSISTENT_DIR}")
print(f"DB file exists: {os.path.exists(DB_PATH)}")
# Check if we're in Hugging Face Space
if os.path.exists("/data"):
print("Running in Hugging Face Space with persistent storage")
# List files in persistent directory
try:
files = os.listdir(PERSISTENT_DIR)
print(f"Files in persistent directory: {files}")
except Exception as e:
print(f"Error listing files: {e}")
except Exception as e:
print(f"Error during startup: {e}")
# Try to create directory if it doesn't exist
os.makedirs(PERSISTENT_DIR, exist_ok=True)
await PersonalAssistantDB.init()
# Intercept offer to capture settings
@app.post("/webrtc/offer", include_in_schema=False)
async def custom_offer(request: Request):
"""Intercept offer to capture settings"""
body = await request.json()
webrtc_id = body.get("webrtc_id")
web_search_enabled = body.get("web_search_enabled", False)
session_id = body.get("session_id")
user_name = body.get("user_name", "")
memories = body.get("memories", {})
print(f"[OFFER] Received offer with webrtc_id: {webrtc_id}")
print(f"[OFFER] web_search_enabled: {web_search_enabled}")
print(f"[OFFER] session_id: {session_id}")
print(f"[OFFER] user_name: {user_name}")
# Store settings with timestamp
if webrtc_id:
connection_settings[webrtc_id] = {
'web_search_enabled': web_search_enabled,
'session_id': session_id,
'user_name': user_name,
'memories': memories,
'timestamp': asyncio.get_event_loop().time()
}
print(f"[OFFER] Stored settings for {webrtc_id}")
# Remove our custom route temporarily
custom_route = None
for i, route in enumerate(app.routes):
if hasattr(route, 'path') and route.path == "/webrtc/offer" and route.endpoint == custom_offer:
custom_route = app.routes.pop(i)
break
# Forward to stream's offer handler
print(f"[OFFER] Forwarding to stream.offer()")
response = await stream.offer(body)
# Re-add our custom route
if custom_route:
app.routes.insert(0, custom_route)
print(f"[OFFER] Response status: {response.get('status', 'unknown') if isinstance(response, dict) else 'OK'}")
return response
@app.post("/session/new")
async def create_new_session():
"""Create a new chat session"""
session_id = str(uuid.uuid4())
await PersonalAssistantDB.create_session(session_id)
return {"session_id": session_id}
@app.post("/session/end")
async def end_session(request: Request):
"""End session and extract memories"""
body = await request.json()
session_id = body.get("session_id")
if not session_id:
return {"error": "session_id required"}
# Extract and save memories from the conversation
await PersonalAssistantDB.extract_and_save_memories(session_id)
return {"status": "ok"}
@app.post("/message/save")
async def save_message(request: Request):
"""Save a message to the database"""
body = await request.json()
session_id = body.get("session_id")
role = body.get("role")
content = body.get("content")
if not all([session_id, role, content]):
return {"error": "Missing required fields"}
await PersonalAssistantDB.save_message(session_id, role, content)
return {"status": "ok"}
@app.get("/history/recent")
async def get_recent_history():
"""Get recent conversation history"""
conversations = await PersonalAssistantDB.get_recent_conversations()
return conversations
@app.get("/history/{session_id}")
async def get_conversation(session_id: str):
"""Get messages for a specific conversation"""
messages = await PersonalAssistantDB.get_conversation_messages(session_id)
return messages
@app.get("/memory/all")
async def get_all_memories():
"""Get all user memories"""
memories = await PersonalAssistantDB.get_all_memories()
return memories
@app.post("/chat/text")
async def chat_text(request: Request):
"""Handle text chat messages using GPT-4o-mini"""
try:
body = await request.json()
message = body.get("message", "")
web_search_enabled = body.get("web_search_enabled", False)
session_id = body.get("session_id")
user_name = body.get("user_name", "")
memories = body.get("memories", {})
if not message:
return {"error": "๋ฉ์์ง๊ฐ ๋น์ด์์ต๋๋ค."}
# Process text chat
result = await process_text_chat(message, web_search_enabled, session_id, user_name, memories)
return result
except Exception as e:
print(f"Error in chat_text endpoint: {e}")
return {"error": "์ฑํ
์ฒ๋ฆฌ ์ค ์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค."}
@app.post("/text_message/{webrtc_id}")
async def receive_text_message(webrtc_id: str, request: Request):
"""Receive text message from client"""
body = await request.json()
message = body.get("content", "")
# Find the handler for this connection
if webrtc_id in stream.handlers:
handler = stream.handlers[webrtc_id]
# Queue the text message for processing
await handler.output_queue.put({
'type': 'text_message',
'content': message
})
return {"status": "ok"}
@app.get("/outputs")
async def outputs(webrtc_id: str):
"""Stream outputs including search events"""
async def output_stream():
async for output in stream.output_stream(webrtc_id):
if hasattr(output, 'args') and output.args:
# Check if it's a search event
if isinstance(output.args[0], dict) and output.args[0].get('type') == 'search':
yield f"event: search\ndata: {json.dumps(output.args[0])}\n\n"
# Regular transcript event with language info
elif isinstance(output.args[0], dict) and 'event' in output.args[0]:
event_data = output.args[0]
if 'event' in event_data and hasattr(event_data['event'], 'transcript'):
data = {
"role": "assistant",
"content": event_data['event'].transcript,
"detected_language": event_data.get('detected_language')
}
yield f"event: output\ndata: {json.dumps(data)}\n\n"
return StreamingResponse(output_stream(), media_type="text/event-stream")
@app.get("/")
async def index():
"""Serve the HTML page"""
rtc_config = get_twilio_turn_credentials() if get_space() else None
html_content = HTML_CONTENT.replace("__RTC_CONFIGURATION__", json.dumps(rtc_config))
return HTMLResponse(content=html_content)
if __name__ == "__main__":
import uvicorn
mode = os.getenv("MODE")
if mode == "UI":
stream.ui.launch(server_port=7860)
elif mode == "PHONE":
stream.fastphone(host="0.0.0.0", port=7860)
else:
uvicorn.run(app, host="0.0.0.0", port=7860) |