Spaces:
Runtime error
Runtime error
Upload ./RepCodec/examples/hubert_feature_reader.py with huggingface_hub
Browse files
RepCodec/examples/hubert_feature_reader.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) ByteDance, Inc. and its affiliates.
|
| 2 |
+
# Copyright (c) Chutong Meng
|
| 3 |
+
#
|
| 4 |
+
# This source code is licensed under the MIT license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
# Based on fairseq (https://github.com/facebookresearch/fairseq)
|
| 7 |
+
|
| 8 |
+
import logging
|
| 9 |
+
|
| 10 |
+
import fairseq
|
| 11 |
+
import torch
|
| 12 |
+
import torch.nn.functional as F
|
| 13 |
+
|
| 14 |
+
from fairseq.data.audio.audio_utils import get_features_or_waveform
|
| 15 |
+
|
| 16 |
+
logger = logging.getLogger("dump_feature")
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class HubertFeatureReader(object):
|
| 20 |
+
def __init__(self, ckpt_path: str, layer: int, device: str, max_chunk=1600000):
|
| 21 |
+
(
|
| 22 |
+
model,
|
| 23 |
+
cfg,
|
| 24 |
+
task,
|
| 25 |
+
) = fairseq.checkpoint_utils.load_model_ensemble_and_task([ckpt_path])
|
| 26 |
+
|
| 27 |
+
self.device = device
|
| 28 |
+
logger.info(f"device = {self.device}")
|
| 29 |
+
|
| 30 |
+
self.model = model[0].eval().to(self.device)
|
| 31 |
+
self.task = task
|
| 32 |
+
self.layer = layer
|
| 33 |
+
self.max_chunk = max_chunk
|
| 34 |
+
logger.info(f"TASK CONFIG:\n{self.task.cfg}")
|
| 35 |
+
logger.info(f" max_chunk = {self.max_chunk}")
|
| 36 |
+
|
| 37 |
+
def read_audio(self, path, ref_len=None):
|
| 38 |
+
wav = get_features_or_waveform(path, need_waveform=True, use_sample_rate=self.task.cfg.sample_rate)
|
| 39 |
+
if wav.ndim == 2:
|
| 40 |
+
wav = wav.mean(-1)
|
| 41 |
+
assert wav.ndim == 1, wav.ndim
|
| 42 |
+
if ref_len is not None and abs(ref_len - len(wav)) > 160:
|
| 43 |
+
logger.warning(f"ref {ref_len} != read {len(wav)} ({path})")
|
| 44 |
+
return wav
|
| 45 |
+
|
| 46 |
+
def get_feats(self, path, ref_len=None):
|
| 47 |
+
x = self.read_audio(path, ref_len=ref_len)
|
| 48 |
+
with torch.no_grad():
|
| 49 |
+
x = torch.from_numpy(x).float().to(self.device)
|
| 50 |
+
if self.task.cfg.normalize:
|
| 51 |
+
x = F.layer_norm(x, x.shape)
|
| 52 |
+
x = x.view(1, -1)
|
| 53 |
+
|
| 54 |
+
feat = []
|
| 55 |
+
for start in range(0, x.size(1), self.max_chunk):
|
| 56 |
+
x_chunk = x[:, start: start + self.max_chunk]
|
| 57 |
+
feat_chunk, _ = self.model.extract_features(
|
| 58 |
+
source=x_chunk,
|
| 59 |
+
padding_mask=None,
|
| 60 |
+
mask=False,
|
| 61 |
+
output_layer=self.layer,
|
| 62 |
+
)
|
| 63 |
+
feat.append(feat_chunk)
|
| 64 |
+
return torch.cat(feat, 1).squeeze(0)
|