File size: 14,852 Bytes
1aceaa0
 
 
 
 
 
ed512fd
 
 
1aceaa0
 
ed512fd
 
 
 
 
 
 
 
 
1aceaa0
 
 
 
 
 
 
c7a9993
799d1da
1aceaa0
c7a9993
fc71c2b
c7a9993
 
1aceaa0
 
 
 
 
51261e6
0198f90
ed512fd
fff6dc8
 
 
1aceaa0
 
 
 
 
 
 
c7a9993
 
 
 
 
 
 
 
1aceaa0
c7a9993
 
 
 
 
 
 
 
 
 
1aceaa0
 
 
 
c7a9993
 
1aceaa0
 
 
 
c7a9993
 
 
 
 
 
 
 
 
 
 
1aceaa0
ed512fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1aceaa0
ed512fd
 
 
 
 
 
 
 
1aceaa0
 
ed512fd
 
 
 
c166f1f
 
 
 
 
 
 
 
 
ed512fd
 
 
 
 
 
 
 
 
 
 
fff6dc8
799d1da
 
 
ed512fd
fff6dc8
 
 
 
 
 
 
 
 
ed512fd
 
 
 
 
 
 
 
 
 
 
 
51261e6
fff6dc8
799d1da
fff6dc8
ed512fd
51261e6
ed512fd
 
 
 
 
 
 
 
 
 
51261e6
799d1da
1aceaa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04d446a
a8cf837
1aceaa0
c7a9993
 
1aceaa0
 
ed512fd
 
5bc61d5
ed512fd
 
 
5bc61d5
1aceaa0
 
 
 
 
 
 
 
 
 
 
 
 
 
ed512fd
1aceaa0
 
 
 
 
 
 
 
 
 
 
 
 
 
ed512fd
 
 
 
 
 
 
 
 
 
1aceaa0
 
ed512fd
 
 
1aceaa0
33df769
1aceaa0
ed512fd
1aceaa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed512fd
1aceaa0
 
 
 
ed512fd
1aceaa0
 
0922892
1aceaa0
c7a9993
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import math
import os
import random
import threading
import time

import cv2
import tempfile
import imageio_ffmpeg
import gradio as gr
import torch
from PIL import Image
from diffusers import (
    CogVideoXPipeline,
    CogVideoXDPMScheduler,
    CogVideoXVideoToVideoPipeline,
    CogVideoXImageToVideoPipeline,
    CogVideoXTransformer3DModel,
)
from diffusers.utils import load_video, load_image
from datetime import datetime, timedelta

from diffusers.image_processor import VaeImageProcessor
import moviepy.editor as mp
import utils
from rife_model import load_rife_model, rife_inference_with_latents
from huggingface_hub import hf_hub_download, snapshot_download
from transformers import pipeline
import gc

# Set CUDA device and enable cuDNN
torch.cuda.set_device(0)
torch.backends.cudnn.enabled = True

device = "cuda" if torch.cuda.is_available() else "cpu"

hf_hub_download(repo_id="ai-forever/Real-ESRGAN", filename="RealESRGAN_x4.pth", local_dir="model_real_esran")
snapshot_download(repo_id="AlexWortega/RIFE", local_dir="model_rife")

pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.bfloat16).to("cpu")
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")

i2v_transformer = CogVideoXTransformer3DModel.from_pretrained(
    "THUDM/CogVideoX-5b-I2V", subfolder="transformer", torch_dtype=torch.bfloat16
)

os.makedirs("./output", exist_ok=True)
os.makedirs("./gradio_tmp", exist_ok=True)

upscale_model = utils.load_sd_upscale("model_real_esran/RealESRGAN_x4.pth", device)
frame_interpolation_model = load_rife_model("model_rife")

# Load the translation model
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")

# Load the LLM model
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("CohereForAI/c4ai-command-r-plus-08-2024")
model = AutoModelForCausalLM.from_pretrained("CohereForAI/c4ai-command-r-plus-08-2024").to(device)

def convert_prompt(prompt: str, retry_times: int = 3) -> str:
    text = prompt.strip()
    
    # Check if the input is in Korean and translate if necessary
    if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in text):
        text = translator(text)[0]['translation_text']
    
    system_prompt = """You are part of a team of bots that creates videos. You work with an assistant bot that will draw anything you say in square brackets.

For example, outputting "a beautiful morning in the woods with the sun peaking through the trees" will trigger your partner bot to output a video of a forest morning, as described. You will be prompted by people looking to create detailed, amazing videos. The way to accomplish this is to take their short prompts and make them extremely detailed and descriptive.
There are a few rules to follow:

You will only ever output a single video description per user request.

When modifications are requested, you should not simply make the description longer. You should refactor the entire description to integrate the suggestions.
Other times the user will not want modifications, but instead want a new image. In this case, you should ignore your previous conversation with the user.

Video descriptions must have the same num of words as examples below. Extra words will be ignored.
"""

    for i in range(retry_times):
        input_text = f"{system_prompt}\n\nUser: Create an imaginative video descriptive caption or modify an earlier caption in ENGLISH for the user input: '{text}'\n\nAssistant:"
        
        inputs = tokenizer(input_text, return_tensors="pt").to(device)
        outputs = model.generate(**inputs, max_new_tokens=200, temperature=0.01, top_p=0.7)
        response = tokenizer.decode(outputs[0], skip_special_tokens=True)
        
        if response:
            return response.split("Assistant:")[-1].strip()
    
    return prompt

def resize_if_unfit(input_video, progress=gr.Progress(track_tqdm=True)):
    width, height = get_video_dimensions(input_video)

    if width == 720 and height == 480:
        processed_video = input_video
    else:
        processed_video = center_crop_resize(input_video)
    return processed_video

def get_video_dimensions(input_video_path):
    reader = imageio_ffmpeg.read_frames(input_video_path)
    metadata = next(reader)
    return metadata["size"]

def center_crop_resize(input_video_path, target_width=720, target_height=480):
    cap = cv2.VideoCapture(input_video_path)

    orig_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    orig_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    orig_fps = cap.get(cv2.CAP_PROP_FPS)
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))

    width_factor = target_width / orig_width
    height_factor = target_height / orig_height
    resize_factor = max(width_factor, height_factor)

    inter_width = int(orig_width * resize_factor)
    inter_height = int(orig_height * resize_factor)

    target_fps = 8
    ideal_skip = max(0, math.ceil(orig_fps / target_fps) - 1)
    skip = min(5, ideal_skip)  # Cap at 5

    while (total_frames / (skip + 1)) < 49 and skip > 0:
        skip -= 1

    processed_frames = []
    frame_count = 0
    total_read = 0

    while frame_count < 49 and total_read < total_frames:
        ret, frame = cap.read()
        if not ret:
            break

        if total_read % (skip + 1) == 0:
            resized = cv2.resize(frame, (inter_width, inter_height), interpolation=cv2.INTER_AREA)

            start_x = (inter_width - target_width) // 2
            start_y = (inter_height - target_height) // 2
            cropped = resized[start_y : start_y + target_height, start_x : start_x + target_width]

            processed_frames.append(cropped)
            frame_count += 1

        total_read += 1

    cap.release()

    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_file:
        temp_video_path = temp_file.name
        fourcc = cv2.VideoWriter_fourcc(*"mp4v")
        out = cv2.VideoWriter(temp_video_path, fourcc, target_fps, (target_width, target_height))

        for frame in processed_frames:
            out.write(frame)

        out.release()

    return temp_video_path

def infer(
    prompt: str,
    image_input: str,
    video_input: str,
    video_strenght: float,
    num_inference_steps: int,
    guidance_scale: float,
    seed: int = -1,
    progress=gr.Progress(track_tqdm=True),
):
    if seed == -1:
        seed = random.randint(0, 2**8 - 1)

    if video_input is not None:
        video = load_video(video_input)[:49]  # Limit to 49 frames
        pipe_video = CogVideoXVideoToVideoPipeline.from_pretrained(
            "THUDM/CogVideoX-5b",
            transformer=pipe.transformer,
            vae=pipe.vae,
            scheduler=pipe.scheduler,
            tokenizer=pipe.tokenizer,
            text_encoder=pipe.text_encoder,
            torch_dtype=torch.bfloat16,
        ).to(device)
        video_pt = pipe_video(
            video=video,
            prompt=prompt,
            num_inference_steps=num_inference_steps,
            num_videos_per_prompt=1,
            strength=video_strenght,
            use_dynamic_cfg=True,
            output_type="pt",
            guidance_scale=guidance_scale,
            generator=torch.Generator(device="cpu").manual_seed(seed),
        ).frames
        pipe_video.to("cpu")
        del pipe_video
        gc.collect()
        torch.cuda.empty_cache()
    elif image_input is not None:
        pipe_image = CogVideoXImageToVideoPipeline.from_pretrained(
            "THUDM/CogVideoX-5b-I2V",
            transformer=i2v_transformer,
            vae=pipe.vae,
            scheduler=pipe.scheduler,
            tokenizer=pipe.tokenizer,
            text_encoder=pipe.text_encoder,
            torch_dtype=torch.bfloat16,
        ).to(device)
        image_input = Image.fromarray(image_input).resize(size=(720, 480))  # Convert to PIL
        image = load_image(image_input)
        video_pt = pipe_image(
            image=image,
            prompt=prompt,
            num_inference_steps=num_inference_steps,
            num_videos_per_prompt=1,
            use_dynamic_cfg=True,
            output_type="pt",
            guidance_scale=guidance_scale,
            generator=torch.Generator(device="cpu").manual_seed(seed),
        ).frames
        pipe_image.to("cpu")
        del pipe_image
        gc.collect()
        torch.cuda.empty_cache()
    else:
        pipe.to(device)
        video_pt = pipe(
            prompt=prompt,
            num_videos_per_prompt=1,
            num_inference_steps=num_inference_steps,
            num_frames=49,
            use_dynamic_cfg=True,
            output_type="pt",
            guidance_scale=guidance_scale,
            generator=torch.Generator(device="cpu").manual_seed(seed),
        ).frames
        pipe.to("cpu")
        gc.collect()
    return (video_pt, seed)

def convert_to_gif(video_path):
    clip = mp.VideoFileClip(video_path)
    clip = clip.set_fps(8)
    clip = clip.resize(height=240)
    gif_path = video_path.replace(".mp4", ".gif")
    clip.write_gif(gif_path, fps=8)
    return gif_path

def delete_old_files():
    while True:
        now = datetime.now()
        cutoff = now - timedelta(minutes=10)
        directories = ["./output", "./gradio_tmp"]

        for directory in directories:
            for filename in os.listdir(directory):
                file_path = os.path.join(directory, filename)
                if os.path.isfile(file_path):
                    file_mtime = datetime.fromtimestamp(os.path.getmtime(file_path))
                    if file_mtime < cutoff:
                        os.remove(file_path)
        time.sleep(600)

threading.Thread(target=delete_old_files, daemon=True).start()
examples_videos = [["example_videos/horse.mp4"], ["example_videos/kitten.mp4"], ["example_videos/train_running.mp4"]]
examples_images = [["example_images/beach.png"], ["example_images/street.png"], ["example_images/camping.png"]]

with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:

    with gr.Row():
        with gr.Column():
            with gr.Accordion("I2V: Image Input (cannot be used simultaneously with video input)", open=False):
                image_input = gr.Image(label="Input Image (will be cropped to 720 * 480)")
                examples_component_images = gr.Examples(examples_images, inputs=[image_input], cache_examples=False)
            with gr.Accordion("V2V: Video Input (cannot be used simultaneously with image input)", open=False):
                video_input = gr.Video(label="Input Video (will be cropped to 49 frames, 6 seconds at 8fps)")
                strength = gr.Slider(0.1, 1.0, value=0.8, step=0.01, label="Strength")
                examples_component_videos = gr.Examples(examples_videos, inputs=[video_input], cache_examples=False)
            prompt = gr.Textbox(label="Prompt (Less than 200 Words)", placeholder="Enter your prompt here", lines=5)

            with gr.Row():
                gr.Markdown(
                    "✨Upon pressing the enhanced prompt button, we will use [GLM-4 Model](https://github.com/THUDM/GLM-4) to polish the prompt and overwrite the original one."
                )
                enhance_button = gr.Button("✨ Enhance Prompt(Optional)")
            with gr.Group():
                with gr.Column():
                    with gr.Row():
                        seed_param = gr.Number(
                            label="Inference Seed (Enter a positive number, -1 for random)", value=-1
                        )
                    with gr.Row():
                        enable_scale = gr.Checkbox(label="Super-Resolution (720 × 480 -> 2880 × 1920)", value=False)
                        enable_rife = gr.Checkbox(label="Frame Interpolation (8fps -> 16fps)", value=False)
                    gr.Markdown(
                        "✨In this demo, we use [RIFE](https://github.com/hzwer/ECCV2022-RIFE) for frame interpolation and [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) for upscaling(Super-Resolution).<br>&nbsp;&nbsp;&nbsp;&nbsp;The entire process is based on open-source solutions."
                    )

            generate_button = gr.Button("🎬 Generate Video")

        with gr.Column():
            video_output = gr.Video(label="CogVideoX Generate Video", width=720, height=480)
            with gr.Row():
                download_video_button = gr.File(label="📥 Download Video", visible=False)
                download_gif_button = gr.File(label="📥 Download GIF", visible=False)
                seed_text = gr.Number(label="Seed Used for Video Generation", visible=False)

    def generate(
        prompt,
        image_input,
        video_input,
        video_strength,
        seed_value,
        scale_status,
        rife_status,
        progress=gr.Progress(track_tqdm=True)
    ):
        latents, seed = infer(
            prompt,
            image_input,
            video_input,
            video_strength,
            num_inference_steps=50,  # NOT Changed
            guidance_scale=7.0,  # NOT Changed
            seed=seed_value,
            progress=progress,
        )
        if scale_status:
            latents = utils.upscale_batch_and_concatenate(upscale_model, latents, device)
        if rife_status:
            latents = rife_inference_with_latents(frame_interpolation_model, latents)

        batch_size = latents.shape[0]
        batch_video_frames = []
        for batch_idx in range(batch_size):
            pt_image = latents[batch_idx]
            pt_image = torch.stack([pt_image[i] for i in range(pt_image.shape[0])])

            image_np = VaeImageProcessor.pt_to_numpy(pt_image)
            image_pil = VaeImageProcessor.numpy_to_pil(image_np)
            batch_video_frames.append(image_pil)

        video_path = utils.save_video(batch_video_frames[0], fps=math.ceil((len(batch_video_frames[0]) - 1) / 6))
        video_update = gr.update(visible=True, value=video_path)
        gif_path = convert_to_gif(video_path)
        gif_update = gr.update(visible=True, value=gif_path)
        seed_update = gr.update(visible=True, value=seed)

        return video_path, video_update, gif_update, seed_update

    def enhance_prompt_func(prompt):
        return convert_prompt(prompt, retry_times=1)

    generate_button.click(
        generate,
        inputs=[prompt, image_input, video_input, strength, seed_param, enable_scale, enable_rife],
        outputs=[video_output, download_video_button, download_gif_button, seed_text],
    )

    enhance_button.click(enhance_prompt_func, inputs=[prompt], outputs=[prompt])
    video_input.upload(resize_if_unfit, inputs=[video_input], outputs=[video_input])

if __name__ == "__main__":
    demo.queue(max_size=15)
    demo.launch()