seawolf2357 commited on
Commit
321d89c
·
verified ·
1 Parent(s): 9d1ac64

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +16 -0
  2. .gitignore +14 -0
  3. Dataset/data_video.py +452 -0
  4. Dataset/dummy_datasets.py +106 -0
  5. Dataset/sakuga_dataset.py +401 -0
  6. Dataset/sakuga_dataset_auto.py +412 -0
  7. Dataset/video_dataset.py +333 -0
  8. Dataset/webds.py +389 -0
  9. LICENSE +201 -0
  10. MODEL_LICENSE +71 -0
  11. README.md +105 -12
  12. accelerate_config_machine_single.yaml +24 -0
  13. diffusers/.github/ISSUE_TEMPLATE/bug-report.yml +110 -0
  14. diffusers/.github/ISSUE_TEMPLATE/config.yml +4 -0
  15. diffusers/.github/ISSUE_TEMPLATE/feature_request.md +20 -0
  16. diffusers/.github/ISSUE_TEMPLATE/feedback.md +12 -0
  17. diffusers/.github/ISSUE_TEMPLATE/new-model-addition.yml +31 -0
  18. diffusers/.github/ISSUE_TEMPLATE/translate.md +29 -0
  19. diffusers/.github/PULL_REQUEST_TEMPLATE.md +61 -0
  20. diffusers/.github/actions/setup-miniconda/action.yml +146 -0
  21. diffusers/.github/workflows/benchmark.yml +67 -0
  22. diffusers/.github/workflows/build_docker_images.yml +103 -0
  23. diffusers/.github/workflows/build_documentation.yml +27 -0
  24. diffusers/.github/workflows/build_pr_documentation.yml +23 -0
  25. diffusers/.github/workflows/mirror_community_pipeline.yml +102 -0
  26. diffusers/.github/workflows/nightly_tests.yml +408 -0
  27. diffusers/.github/workflows/notify_slack_about_release.yml +23 -0
  28. diffusers/.github/workflows/pr_dependency_test.yml +35 -0
  29. diffusers/.github/workflows/pr_flax_dependency_test.yml +38 -0
  30. diffusers/.github/workflows/pr_test_fetcher.yml +177 -0
  31. diffusers/.github/workflows/pr_test_peft_backend.yml +134 -0
  32. diffusers/.github/workflows/pr_tests.yml +236 -0
  33. diffusers/.github/workflows/pr_torch_dependency_test.yml +36 -0
  34. diffusers/.github/workflows/push_tests.yml +391 -0
  35. diffusers/.github/workflows/push_tests_fast.yml +126 -0
  36. diffusers/.github/workflows/push_tests_mps.yml +76 -0
  37. diffusers/.github/workflows/pypi_publish.yaml +81 -0
  38. diffusers/.github/workflows/release_tests_fast.yml +389 -0
  39. diffusers/.github/workflows/run_tests_from_a_pr.yml +74 -0
  40. diffusers/.github/workflows/ssh-pr-runner.yml +40 -0
  41. diffusers/.github/workflows/ssh-runner.yml +51 -0
  42. diffusers/.github/workflows/stale.yml +30 -0
  43. diffusers/.github/workflows/trufflehog.yml +15 -0
  44. diffusers/.github/workflows/typos.yml +14 -0
  45. diffusers/.github/workflows/update_metadata.yml +30 -0
  46. diffusers/.github/workflows/upload_pr_documentation.yml +16 -0
  47. diffusers/.gitignore +178 -0
  48. diffusers/CITATION.cff +52 -0
  49. diffusers/CODE_OF_CONDUCT.md +130 -0
  50. diffusers/CONTRIBUTING.md +506 -0
.gitattributes CHANGED
@@ -33,3 +33,19 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ diffusers/docs/source/en/imgs/access_request.png filter=lfs diff=lfs merge=lfs -text
37
+ diffusers/examples/research_projects/gligen/generated-images-100000-00.png filter=lfs diff=lfs merge=lfs -text
38
+ inference/gradio_composite_demo/example_images/beach.png filter=lfs diff=lfs merge=lfs -text
39
+ inference/gradio_composite_demo/example_images/camping.png filter=lfs diff=lfs merge=lfs -text
40
+ inference/gradio_composite_demo/example_images/street.png filter=lfs diff=lfs merge=lfs -text
41
+ inference/gradio_composite_demo/example_videos/kitten.mp4 filter=lfs diff=lfs merge=lfs -text
42
+ inference/gradio_composite_demo/example_videos/train_running.mp4 filter=lfs diff=lfs merge=lfs -text
43
+ tools/caption/assests/CogVLM2-Caption-example.png filter=lfs diff=lfs merge=lfs -text
44
+ tools/caption/assests/cogvlm2-video-example.png filter=lfs diff=lfs merge=lfs -text
45
+ video/showcase_1.mp4 filter=lfs diff=lfs merge=lfs -text
46
+ video/showcase_2.mp4 filter=lfs diff=lfs merge=lfs -text
47
+ video/showcase_3.mp4 filter=lfs diff=lfs merge=lfs -text
48
+ video/text_1.mp4 filter=lfs diff=lfs merge=lfs -text
49
+ video/text_2.mp4 filter=lfs diff=lfs merge=lfs -text
50
+ video/text_3.mp4 filter=lfs diff=lfs merge=lfs -text
51
+ video/video.mp4 filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *__pycache__/
2
+ samples*/
3
+ runs/
4
+ checkpoints/
5
+ master_ip
6
+ logs/
7
+ *.DS_Store
8
+ .idea
9
+ output*
10
+ test/
11
+ wandb/
12
+ pretrained_weight/
13
+ .vscode/
14
+ Test_Dataset/
Dataset/data_video.py ADDED
@@ -0,0 +1,452 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+ import os
3
+ import sys
4
+ from functools import partial
5
+ import math
6
+ import torchvision.transforms as TT
7
+ from webds import MetaDistributedWebDataset
8
+ import random
9
+ from fractions import Fraction
10
+ from typing import Union, Optional, Dict, Any, Tuple
11
+ from torchvision.io.video import av
12
+ import numpy as np
13
+ import torch
14
+ from torchvision.io import _video_opt
15
+ from torchvision.io.video import _check_av_available, _read_from_stream, _align_audio_frames
16
+ from torchvision.transforms.functional import center_crop, resize
17
+ from torchvision.transforms import InterpolationMode
18
+ import decord
19
+ from decord import VideoReader
20
+ from torch.utils.data import Dataset
21
+
22
+
23
+ def read_video(
24
+ filename: str,
25
+ start_pts: Union[float, Fraction] = 0,
26
+ end_pts: Optional[Union[float, Fraction]] = None,
27
+ pts_unit: str = "pts",
28
+ output_format: str = "THWC",
29
+ ) -> Tuple[torch.Tensor, torch.Tensor, Dict[str, Any]]:
30
+ """
31
+ Reads a video from a file, returning both the video frames and the audio frames
32
+
33
+ Args:
34
+ filename (str): path to the video file
35
+ start_pts (int if pts_unit = 'pts', float / Fraction if pts_unit = 'sec', optional):
36
+ The start presentation time of the video
37
+ end_pts (int if pts_unit = 'pts', float / Fraction if pts_unit = 'sec', optional):
38
+ The end presentation time
39
+ pts_unit (str, optional): unit in which start_pts and end_pts values will be interpreted,
40
+ either 'pts' or 'sec'. Defaults to 'pts'.
41
+ output_format (str, optional): The format of the output video tensors. Can be either "THWC" (default) or "TCHW".
42
+
43
+ Returns:
44
+ vframes (Tensor[T, H, W, C] or Tensor[T, C, H, W]): the `T` video frames
45
+ aframes (Tensor[K, L]): the audio frames, where `K` is the number of channels and `L` is the number of points
46
+ info (Dict): metadata for the video and audio. Can contain the fields video_fps (float) and audio_fps (int)
47
+ """
48
+
49
+ output_format = output_format.upper()
50
+ if output_format not in ("THWC", "TCHW"):
51
+ raise ValueError(f"output_format should be either 'THWC' or 'TCHW', got {output_format}.")
52
+
53
+ _check_av_available()
54
+
55
+ if end_pts is None:
56
+ end_pts = float("inf")
57
+
58
+ if end_pts < start_pts:
59
+ raise ValueError(f"end_pts should be larger than start_pts, got start_pts={start_pts} and end_pts={end_pts}")
60
+
61
+ info = {}
62
+ audio_frames = []
63
+ audio_timebase = _video_opt.default_timebase
64
+
65
+ with av.open(filename, metadata_errors="ignore") as container:
66
+ if container.streams.audio:
67
+ audio_timebase = container.streams.audio[0].time_base
68
+ if container.streams.video:
69
+ video_frames = _read_from_stream(
70
+ container,
71
+ start_pts,
72
+ end_pts,
73
+ pts_unit,
74
+ container.streams.video[0],
75
+ {"video": 0},
76
+ )
77
+ video_fps = container.streams.video[0].average_rate
78
+ # guard against potentially corrupted files
79
+ if video_fps is not None:
80
+ info["video_fps"] = float(video_fps)
81
+
82
+ if container.streams.audio:
83
+ audio_frames = _read_from_stream(
84
+ container,
85
+ start_pts,
86
+ end_pts,
87
+ pts_unit,
88
+ container.streams.audio[0],
89
+ {"audio": 0},
90
+ )
91
+ info["audio_fps"] = container.streams.audio[0].rate
92
+
93
+ aframes_list = [frame.to_ndarray() for frame in audio_frames]
94
+
95
+ vframes = torch.empty((0, 1, 1, 3), dtype=torch.uint8)
96
+
97
+ if aframes_list:
98
+ aframes = np.concatenate(aframes_list, 1)
99
+ aframes = torch.as_tensor(aframes)
100
+ if pts_unit == "sec":
101
+ start_pts = int(math.floor(start_pts * (1 / audio_timebase)))
102
+ if end_pts != float("inf"):
103
+ end_pts = int(math.ceil(end_pts * (1 / audio_timebase)))
104
+ aframes = _align_audio_frames(aframes, audio_frames, start_pts, end_pts)
105
+ else:
106
+ aframes = torch.empty((1, 0), dtype=torch.float32)
107
+
108
+ if output_format == "TCHW":
109
+ # [T,H,W,C] --> [T,C,H,W]
110
+ vframes = vframes.permute(0, 3, 1, 2)
111
+
112
+ return vframes, aframes, info
113
+
114
+
115
+ def resize_for_rectangle_crop(arr, image_size, reshape_mode="random"):
116
+ if arr.shape[3] / arr.shape[2] > image_size[1] / image_size[0]:
117
+ arr = resize(
118
+ arr,
119
+ size=[image_size[0], int(arr.shape[3] * image_size[0] / arr.shape[2])],
120
+ interpolation=InterpolationMode.BICUBIC,
121
+ )
122
+ else:
123
+ arr = resize(
124
+ arr,
125
+ size=[int(arr.shape[2] * image_size[1] / arr.shape[3]), image_size[1]],
126
+ interpolation=InterpolationMode.BICUBIC,
127
+ )
128
+
129
+ h, w = arr.shape[2], arr.shape[3]
130
+ arr = arr.squeeze(0)
131
+
132
+ delta_h = h - image_size[0]
133
+ delta_w = w - image_size[1]
134
+
135
+ if reshape_mode == "random" or reshape_mode == "none":
136
+ top = np.random.randint(0, delta_h + 1)
137
+ left = np.random.randint(0, delta_w + 1)
138
+ elif reshape_mode == "center":
139
+ top, left = delta_h // 2, delta_w // 2
140
+ else:
141
+ raise NotImplementedError
142
+ arr = TT.functional.crop(arr, top=top, left=left, height=image_size[0], width=image_size[1])
143
+ return arr
144
+
145
+
146
+ def pad_last_frame(tensor, num_frames):
147
+ # T, H, W, C
148
+ if len(tensor) < num_frames:
149
+ pad_length = num_frames - len(tensor)
150
+ # Use the last frame to pad instead of zero
151
+ last_frame = tensor[-1]
152
+ pad_tensor = last_frame.unsqueeze(0).expand(pad_length, *tensor.shape[1:])
153
+ padded_tensor = torch.cat([tensor, pad_tensor], dim=0)
154
+ return padded_tensor
155
+ else:
156
+ return tensor[:num_frames]
157
+
158
+
159
+ def load_video(
160
+ video_data,
161
+ sampling="uniform",
162
+ duration=None,
163
+ num_frames=4,
164
+ wanted_fps=None,
165
+ actual_fps=None,
166
+ skip_frms_num=0.0,
167
+ nb_read_frames=None,
168
+ ):
169
+ decord.bridge.set_bridge("torch")
170
+ vr = VideoReader(uri=video_data, height=-1, width=-1)
171
+ if nb_read_frames is not None:
172
+ ori_vlen = nb_read_frames
173
+ else:
174
+ ori_vlen = min(int(duration * actual_fps) - 1, len(vr))
175
+
176
+ max_seek = int(ori_vlen - skip_frms_num - num_frames / wanted_fps * actual_fps)
177
+ start = random.randint(skip_frms_num, max_seek + 1)
178
+ end = int(start + num_frames / wanted_fps * actual_fps)
179
+ n_frms = num_frames
180
+
181
+ if sampling == "uniform":
182
+ indices = np.arange(start, end, (end - start) / n_frms).astype(int)
183
+ else:
184
+ raise NotImplementedError
185
+
186
+ # get_batch -> T, H, W, C
187
+ temp_frms = vr.get_batch(np.arange(start, end))
188
+ assert temp_frms is not None
189
+ tensor_frms = torch.from_numpy(temp_frms) if type(temp_frms) is not torch.Tensor else temp_frms
190
+ tensor_frms = tensor_frms[torch.tensor((indices - start).tolist())]
191
+
192
+ return pad_last_frame(tensor_frms, num_frames)
193
+
194
+
195
+ import threading
196
+
197
+
198
+ def load_video_with_timeout(*args, **kwargs):
199
+ video_container = {}
200
+
201
+ def target_function():
202
+ video = load_video(*args, **kwargs)
203
+ video_container["video"] = video
204
+
205
+ thread = threading.Thread(target=target_function)
206
+ thread.start()
207
+ timeout = 20
208
+ thread.join(timeout)
209
+
210
+ if thread.is_alive():
211
+ print("Loading video timed out")
212
+ raise TimeoutError
213
+ return video_container.get("video", None).contiguous()
214
+
215
+
216
+ def process_video(
217
+ video_path,
218
+ image_size=None,
219
+ duration=None,
220
+ num_frames=4,
221
+ wanted_fps=None,
222
+ actual_fps=None,
223
+ skip_frms_num=0.0,
224
+ nb_read_frames=None,
225
+ ):
226
+ """
227
+ video_path: str or io.BytesIO
228
+ image_size: .
229
+ duration: preknow the duration to speed up by seeking to sampled start. TODO by_pass if unknown.
230
+ num_frames: wanted num_frames.
231
+ wanted_fps: .
232
+ skip_frms_num: ignore the first and the last xx frames, avoiding transitions.
233
+ """
234
+
235
+ video = load_video_with_timeout(
236
+ video_path,
237
+ duration=duration,
238
+ num_frames=num_frames,
239
+ wanted_fps=wanted_fps,
240
+ actual_fps=actual_fps,
241
+ skip_frms_num=skip_frms_num,
242
+ nb_read_frames=nb_read_frames,
243
+ )
244
+
245
+ # --- copy and modify the image process ---
246
+ video = video.permute(0, 3, 1, 2) # [T, C, H, W]
247
+
248
+ # resize
249
+ if image_size is not None:
250
+ video = resize_for_rectangle_crop(video, image_size, reshape_mode="center")
251
+
252
+ return video
253
+
254
+
255
+ def process_fn_video(src, image_size, fps, num_frames, skip_frms_num=0.0, txt_key="caption"):
256
+ while True:
257
+ r = next(src)
258
+ if "mp4" in r:
259
+ video_data = r["mp4"]
260
+ elif "avi" in r:
261
+ video_data = r["avi"]
262
+ else:
263
+ print("No video data found")
264
+ continue
265
+
266
+ if txt_key not in r:
267
+ txt = ""
268
+ else:
269
+ txt = r[txt_key]
270
+
271
+ if isinstance(txt, bytes):
272
+ txt = txt.decode("utf-8")
273
+ else:
274
+ txt = str(txt)
275
+
276
+ duration = r.get("duration", None)
277
+ if duration is not None:
278
+ duration = float(duration)
279
+ else:
280
+ continue
281
+
282
+ actual_fps = r.get("fps", None)
283
+ if actual_fps is not None:
284
+ actual_fps = float(actual_fps)
285
+ else:
286
+ continue
287
+
288
+ required_frames = num_frames / fps * actual_fps + 2 * skip_frms_num
289
+ required_duration = num_frames / fps + 2 * skip_frms_num / actual_fps
290
+
291
+ if duration is not None and duration < required_duration:
292
+ continue
293
+
294
+ try:
295
+ frames = process_video(
296
+ io.BytesIO(video_data),
297
+ num_frames=num_frames,
298
+ wanted_fps=fps,
299
+ image_size=image_size,
300
+ duration=duration,
301
+ actual_fps=actual_fps,
302
+ skip_frms_num=skip_frms_num,
303
+ )
304
+ frames = (frames - 127.5) / 127.5
305
+ except Exception as e:
306
+ print(e)
307
+ continue
308
+
309
+ item = {
310
+ "mp4": frames,
311
+ "txt": txt,
312
+ "num_frames": num_frames,
313
+ "fps": fps,
314
+ }
315
+
316
+ yield item
317
+
318
+
319
+ class VideoDataset(MetaDistributedWebDataset):
320
+ def __init__(
321
+ self,
322
+ path,
323
+ image_size,
324
+ num_frames,
325
+ fps,
326
+ skip_frms_num=0.0,
327
+ nshards=sys.maxsize,
328
+ seed=1,
329
+ meta_names=None,
330
+ shuffle_buffer=1000,
331
+ include_dirs=None,
332
+ txt_key="caption",
333
+ **kwargs,
334
+ ):
335
+ if seed == -1:
336
+ seed = random.randint(0, 1000000)
337
+ if meta_names is None:
338
+ meta_names = []
339
+
340
+ if path.startswith(";"):
341
+ path, include_dirs = path.split(";", 1)
342
+ super().__init__(
343
+ path,
344
+ partial(
345
+ process_fn_video, num_frames=num_frames, image_size=image_size, fps=fps, skip_frms_num=skip_frms_num
346
+ ),
347
+ seed,
348
+ meta_names=meta_names,
349
+ shuffle_buffer=shuffle_buffer,
350
+ nshards=nshards,
351
+ include_dirs=include_dirs,
352
+ )
353
+
354
+ @classmethod
355
+ def create_dataset_function(cls, path, args, **kwargs):
356
+ return cls(path, **kwargs)
357
+
358
+
359
+ class SFTDataset(Dataset):
360
+ def __init__(self, data_dir, video_size, fps, max_num_frames, skip_frms_num=3):
361
+ """
362
+ skip_frms_num: ignore the first and the last xx frames, avoiding transitions.
363
+ """
364
+ super(SFTDataset, self).__init__()
365
+
366
+ self.video_size = video_size
367
+ self.fps = fps
368
+ self.max_num_frames = max_num_frames
369
+ self.skip_frms_num = skip_frms_num
370
+
371
+ self.video_paths = []
372
+ self.captions = []
373
+
374
+ for root, dirnames, filenames in os.walk(data_dir):
375
+ for filename in filenames:
376
+ if filename.endswith(".mp4"):
377
+ video_path = os.path.join(root, filename)
378
+ self.video_paths.append(video_path)
379
+
380
+ caption_path = video_path.replace(".mp4", ".txt").replace("videos", "labels")
381
+ if os.path.exists(caption_path):
382
+ caption = open(caption_path, "r").read().splitlines()[0]
383
+ else:
384
+ caption = ""
385
+ self.captions.append(caption)
386
+
387
+ def __getitem__(self, index):
388
+ decord.bridge.set_bridge("torch")
389
+
390
+ video_path = self.video_paths[index]
391
+ vr = VideoReader(uri=video_path, height=-1, width=-1)
392
+ actual_fps = vr.get_avg_fps()
393
+ ori_vlen = len(vr)
394
+
395
+ if ori_vlen / actual_fps * self.fps > self.max_num_frames:
396
+ num_frames = self.max_num_frames
397
+ start = int(self.skip_frms_num)
398
+ end = int(start + num_frames / self.fps * actual_fps)
399
+ end_safty = min(int(start + num_frames / self.fps * actual_fps), int(ori_vlen))
400
+ indices = np.arange(start, end, (end - start) // num_frames).astype(int)
401
+ temp_frms = vr.get_batch(np.arange(start, end_safty))
402
+ assert temp_frms is not None
403
+ tensor_frms = torch.from_numpy(temp_frms) if type(temp_frms) is not torch.Tensor else temp_frms
404
+ tensor_frms = tensor_frms[torch.tensor((indices - start).tolist())]
405
+ else:
406
+ if ori_vlen > self.max_num_frames:
407
+ num_frames = self.max_num_frames
408
+ start = int(self.skip_frms_num)
409
+ end = int(ori_vlen - self.skip_frms_num)
410
+ indices = np.arange(start, end, max((end - start) // num_frames, 1)).astype(int)
411
+ temp_frms = vr.get_batch(np.arange(start, end))
412
+ assert temp_frms is not None
413
+ tensor_frms = torch.from_numpy(temp_frms) if type(temp_frms) is not torch.Tensor else temp_frms
414
+ tensor_frms = tensor_frms[torch.tensor((indices - start).tolist())]
415
+ else:
416
+
417
+ def nearest_smaller_4k_plus_1(n):
418
+ remainder = n % 4
419
+ if remainder == 0:
420
+ return n - 3
421
+ else:
422
+ return n - remainder + 1
423
+
424
+ start = int(self.skip_frms_num)
425
+ end = int(ori_vlen - self.skip_frms_num)
426
+ num_frames = nearest_smaller_4k_plus_1(end - start) # 3D VAE requires the number of frames to be 4k+1
427
+ end = int(start + num_frames)
428
+ temp_frms = vr.get_batch(np.arange(start, end))
429
+ assert temp_frms is not None
430
+ tensor_frms = torch.from_numpy(temp_frms) if type(temp_frms) is not torch.Tensor else temp_frms
431
+
432
+ tensor_frms = pad_last_frame(
433
+ tensor_frms, self.max_num_frames
434
+ ) # the len of indices may be less than num_frames, due to round error
435
+ tensor_frms = tensor_frms.permute(0, 3, 1, 2) # [T, H, W, C] -> [T, C, H, W]
436
+ tensor_frms = resize_for_rectangle_crop(tensor_frms, self.video_size, reshape_mode="center")
437
+ tensor_frms = (tensor_frms - 127.5) / 127.5
438
+
439
+ item = {
440
+ "mp4": tensor_frms,
441
+ "txt": self.captions[index],
442
+ "num_frames": num_frames,
443
+ "fps": self.fps,
444
+ }
445
+ return item
446
+
447
+ def __len__(self):
448
+ return len(self.video_paths)
449
+
450
+ @classmethod
451
+ def create_dataset_function(cls, path, args, **kwargs):
452
+ return cls(data_dir=path, **kwargs)
Dataset/dummy_datasets.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import warnings
3
+ import glob
4
+ import random
5
+ import numpy as np
6
+ from PIL import Image
7
+
8
+ import torch
9
+ from torch.utils.data import Dataset
10
+ import torchvision
11
+ import torch.distributed as dist
12
+
13
+ from decord import VideoReader
14
+
15
+
16
+ class DummyDataset(Dataset):
17
+ def __init__(
18
+ self,
19
+ # width=1024, height=576,
20
+ sample_frames=25,
21
+ base_folder='data/samples/',
22
+ file_list=None,
23
+ temporal_sample=None,
24
+ transform=None,
25
+ seed=42,
26
+ ):
27
+ """
28
+ Args:
29
+ num_samples (int): Number of samples in the dataset.
30
+ channels (int): Number of channels, default is 3 for RGB.
31
+ """
32
+ # Define the path to the folder containing video frames
33
+ # self.base_folder = 'bdd100k/images/track/mini'
34
+ self.base_folder = base_folder
35
+
36
+ self.file_list = file_list
37
+ if file_list is None:
38
+ self.video_lists = glob.glob(os.path.join(self.base_folder, '*.mp4'))
39
+ else:
40
+ # read from file_list.txt
41
+ self.video_lists = []
42
+ with open(file_list, 'r') as f:
43
+ for line in f:
44
+ video_path = line.strip()
45
+ self.video_lists.append(os.path.join(self.base_folder, video_path))
46
+
47
+ self.num_samples = len(self.video_lists)
48
+ self.channels = 3
49
+ # self.width = width
50
+ # self.height = height
51
+ self.sample_frames = sample_frames
52
+ self.temporal_sample = temporal_sample
53
+ self.transform = transform
54
+
55
+ self.seed = seed
56
+
57
+ def __len__(self):
58
+ return self.num_samples
59
+
60
+ def get_sample(self, idx):
61
+ """
62
+ Args:
63
+ idx (int): Index of the sample to return.
64
+
65
+ Returns:
66
+ dict: A dictionary containing the 'pixel_values' tensor of shape (16, channels, 320, 512).
67
+ """
68
+
69
+ # path = random.choice(self.video_lists)
70
+ path = self.video_lists[idx]
71
+
72
+ if self.file_list is not None: # read from pcache
73
+ with open(path, 'rb') as f:
74
+ vframes = VideoReader(f)
75
+ else:
76
+ vframes, aframes, info = torchvision.io.read_video(filename=path, pts_unit='sec', output_format='TCHW')
77
+ total_frames = len(vframes)
78
+
79
+ # Sampling video frames
80
+ start_frame_ind, end_frame_ind = self.temporal_sample(total_frames)
81
+ if not end_frame_ind - start_frame_ind >= self.sample_frames:
82
+ raise ValueError(f'video {path} does not have enough frames')
83
+ frame_indice = np.linspace(start_frame_ind, end_frame_ind-1, self.sample_frames, dtype=int)
84
+
85
+ if self.file_list is not None: # read from pcache
86
+ video = torch.from_numpy(vframes.get_batch(frame_indice).asnumpy()).permute(0, 3, 1, 2).contiguous()
87
+ else:
88
+ video = vframes[frame_indice]
89
+
90
+ # (f c h w)
91
+ pixel_values = self.transform(video)
92
+
93
+ return {'pixel_values': pixel_values}
94
+
95
+ def __getitem__(self, idx):
96
+ # return self.get_sample(idx)
97
+
98
+ while(True):
99
+ try:
100
+ # idx = np.random.randint(0, len(self.video_lists) - 1)
101
+ # idx = self.rng.integers(0, len(self.video_lists))
102
+ item = self.get_sample(idx)
103
+ return item
104
+ except:
105
+ warnings.warn(f'loading {idx} failed, retrying...')
106
+ idx = np.random.randint(0, len(self.video_lists) - 1)
Dataset/sakuga_dataset.py ADDED
@@ -0,0 +1,401 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from datetime import timedelta
3
+ from pathlib import Path
4
+ from typing import List, Optional, Tuple, Union
5
+ from torch.utils.data import DataLoader, Dataset
6
+ from tqdm.auto import tqdm
7
+ from torchvision.transforms.functional import center_crop, resize
8
+ from torchvision.transforms import InterpolationMode
9
+ import torchvision.transforms as TT
10
+ import numpy as np
11
+ import accelerate
12
+ import torch
13
+ import pandas as pd
14
+ from pathlib import PosixPath
15
+ import os
16
+ from datetime import datetime
17
+
18
+ try:
19
+ import decord
20
+ except ImportError:
21
+ raise ImportError(
22
+ "The `decord` package is required for loading the video dataset. Install with `pip install decord`"
23
+ )
24
+ decord.bridge.set_bridge("torch")
25
+
26
+
27
+ class Sakuga_Dataset(Dataset):
28
+ def __init__(
29
+ self,
30
+ instance_data_root: Optional[str] = None,
31
+ sketch_data_root: Optional[str] = None,
32
+ dataset_name: Optional[str] = None,
33
+ dataset_config_name: Optional[str] = None,
34
+ caption_column: str = "text",
35
+ video_column: str = "video",
36
+ height: int = 480,
37
+ width: int = 720,
38
+ video_reshape_mode: str = "center",
39
+ fps: int = 8,
40
+ max_num_frames: int = 49,
41
+ skip_frames_start: int = 0,
42
+ skip_frames_end: int = 0,
43
+ cache_dir: Optional[str] = None,
44
+ id_token: Optional[str] = None,
45
+ data_information: Optional[str] = None,
46
+ stage: Optional[str] = "1",
47
+ ) -> None:
48
+ super().__init__()
49
+
50
+ self.instance_data_root = Path(instance_data_root) if instance_data_root is not None else None
51
+ self.sketch_data_root = Path(sketch_data_root) if sketch_data_root is not None else None
52
+ self.dataset_name = dataset_name
53
+ self.dataset_config_name = dataset_config_name
54
+ self.caption_column = caption_column
55
+ self.video_column = video_column
56
+ self.height = height
57
+ self.width = width
58
+ self.video_reshape_mode = video_reshape_mode
59
+ self.fps = fps
60
+ self.max_num_frames = max_num_frames
61
+ self.skip_frames_start = skip_frames_start
62
+ self.skip_frames_end = skip_frames_end
63
+ self.cache_dir = cache_dir
64
+ self.id_token = id_token or ""
65
+ self.stage=stage
66
+
67
+ '''
68
+ if dataset_name is not None:
69
+ self.instance_prompts, self.instance_video_paths = self._load_dataset_from_hub()
70
+ else:
71
+ self.instance_prompts, self.instance_video_paths = self._load_dataset_from_local_path()
72
+ '''
73
+
74
+ self.data_information=pd.read_parquet(data_information)
75
+ self.num_instance_videos = self.data_information.shape[0]
76
+
77
+
78
+ #self.detector = LineartDetector('cpu')
79
+ #TODO: here just point the cuda maybe have some problem
80
+
81
+ #we put the preprocess_data() in the get_item function
82
+ #self.instance_videos = self._preprocess_data()
83
+ #here, how to make it in the get_item?
84
+
85
+ def __len__(self):
86
+ return self.num_instance_videos
87
+
88
+ def encode_video(self, video,vae,device):
89
+
90
+
91
+ #vae,device
92
+ video = video.to(device, dtype=vae.dtype).unsqueeze(0)
93
+ video = video.permute(0, 2, 1, 3, 4) # [B, C, F, H, W]
94
+ image = video[:, :, :1].clone()
95
+
96
+ latent_dist = vae.encode(video).latent_dist
97
+
98
+ image_noise_sigma = torch.normal(mean=-3.0, std=0.5, size=(1,), device=image.device)
99
+ image_noise_sigma = torch.exp(image_noise_sigma).to(dtype=image.dtype)
100
+ noisy_image = torch.randn_like(image) * image_noise_sigma[:, None, None, None, None]
101
+ image_latent_dist = vae.encode(noisy_image).latent_dist
102
+
103
+ return latent_dist, image_latent_dist
104
+
105
+ def read_video(self,video_path):
106
+ filename=PosixPath(video_path)
107
+
108
+ #this part have some wrong things
109
+ try:
110
+ video_reader = decord.VideoReader(uri=filename.as_posix())
111
+ video_num_frames = len(video_reader)
112
+
113
+ #需不需要这里强制一下从第10帧开始?
114
+ start_frame = min(self.skip_frames_start, video_num_frames)
115
+ end_frame = max(0, video_num_frames - self.skip_frames_end)
116
+ if end_frame <= start_frame:
117
+ frames = video_reader.get_batch([start_frame])
118
+ elif end_frame - start_frame <= self.max_num_frames:
119
+ frames = video_reader.get_batch(list(range(start_frame, end_frame)))
120
+ else:
121
+ #this has problem
122
+ #indices = list(range(start_frame, end_frame, (end_frame - start_frame) // self.max_num_frames))
123
+ indices=list(range(start_frame,self.max_num_frames))
124
+ frames = video_reader.get_batch(indices)
125
+
126
+ # Ensure that we don't go over the limit
127
+ frames = frames[: self.max_num_frames]
128
+ selected_num_frames = frames.shape[0]
129
+
130
+ # Choose first (4k + 1) frames as this is how many is required by the VAE
131
+ remainder = (3 + (selected_num_frames % 4)) % 4
132
+ if remainder != 0:
133
+ frames = frames[:-remainder]
134
+ selected_num_frames = frames.shape[0]
135
+
136
+ assert (selected_num_frames - 1) % 4 == 0
137
+
138
+ # Training transforms
139
+
140
+ frames = frames.permute(0, 3, 1, 2) # [F, C, H, W]
141
+ #print("frame",frames.shape)
142
+ frames = self._resize_for_rectangle_crop(frames)
143
+ final_frames = frames.contiguous()
144
+ if final_frames.dim()==3:
145
+ final_frames=final_frames.unsqueeze(0)
146
+ return final_frames
147
+ except:
148
+ return None
149
+
150
+
151
+
152
+ def __getitem__(self, index):
153
+
154
+ #output_video=self.encode_video(video,vae,device)
155
+ #_encode_instance_video=self.encode_video(self.instance_prompts[index],device=)
156
+
157
+ #处理selfinstance_videos
158
+
159
+ folder_path=os.path.join(self.instance_data_root, str(self.data_information.iloc[index]['identifier_video']))
160
+
161
+ #sketch_path=os.path.join(self.sketch_data_root, str(self.data_information.iloc[index]['identifier_video']))
162
+ #注意这里的sketch存的是[0,255]的信息,不需要1-了,但是之后可能还是要变成2值的操作,得看一下如何2值化
163
+
164
+
165
+ #这里寻找id号的过程有点问题,不太对
166
+ #这个identifier是不是就是对应的片段名称?是的,identifier后面的对应的就是sence_number
167
+ #indices = self.data_information.index[self.data_information['identifier_video'] == self.data_information.iloc[index]['identifier_video']].tolist()
168
+
169
+ # video_name=self.data_information.iloc[index]['identifier_video']
170
+ # sence_number=self.data_information.iloc[index]["identifier"].split(":")[1]
171
+ # data_name=f"{video_name}-Scene-{int(sence_number):03d}.mp4"
172
+
173
+
174
+ frames=self.data_information.iloc[index]["start_frame"]
175
+ video_name=self.data_information.iloc[index]["identifier"].split(':')[0]
176
+ #print(frames)
177
+
178
+ data_path_1=f'{video_name}-Scene-{frames}.mp4'
179
+ data_path_2=f'{video_name}-Scene-{frames+1}.mp4'
180
+ data_path_3=f'{video_name}-Scene-{frames-1}.mp4'
181
+ fd1=os.path.join(folder_path,data_path_1)
182
+ #sketch_fd1=os.path.join(sketch_path,data_path_1)
183
+ fd2=os.path.join(folder_path,data_path_2)
184
+ #sketch_fd2=os.path.join(sketch_path,data_path_2)
185
+ fd3=os.path.join(folder_path,data_path_3)
186
+ #sketch_fd3=os.path.join(sketch_path,data_path_2)
187
+
188
+ #print(fd1)
189
+
190
+ if os.path.exists(fd1):
191
+ file_path=fd1
192
+ elif os.path.exists(fd2):
193
+ file_path=fd2
194
+ elif os.path.exists(fd3):
195
+ file_path=fd3
196
+
197
+
198
+
199
+ prompt=self.data_information.iloc[index]["text_description"]
200
+
201
+ final_frames=self.read_video(PosixPath(file_path))
202
+ #final_sketch_frames=self.read_video(PosixPath(sketch_file_path))
203
+ final_sketch_frames=None
204
+
205
+
206
+
207
+ instance_prompt = prompt + self.id_token
208
+
209
+ return {
210
+ "instance_prompt": instance_prompt,
211
+ "instance_video": final_frames,
212
+ "file_path":file_path,
213
+ "sketch_video": final_sketch_frames,
214
+ "instance_image": None,
215
+ #"instance_sketch": final_sketch,
216
+ }
217
+
218
+ def _load_dataset_from_hub(self):
219
+ try:
220
+ from datasets import load_dataset
221
+ except ImportError:
222
+ raise ImportError(
223
+ "You are trying to load your data using the datasets library. If you wish to train using custom "
224
+ "captions please install the datasets library: `pip install datasets`. If you wish to load a "
225
+ "local folder containing images only, specify --instance_data_root instead."
226
+ )
227
+
228
+ # Downloading and loading a dataset from the hub. See more about loading custom images at
229
+ # https://huggingface.co/docs/datasets/v2.0.0/en/dataset_script
230
+ dataset = load_dataset(
231
+ self.dataset_name,
232
+ self.dataset_config_name,
233
+ cache_dir=self.cache_dir,
234
+ )
235
+ column_names = dataset["train"].column_names
236
+
237
+ if self.video_column is None:
238
+ video_column = column_names[0]
239
+ #logger.info(f"`video_column` defaulting to {video_column}")
240
+ print(f"`video_column` defaulting to {video_column}")
241
+ else:
242
+ video_column = self.video_column
243
+ if video_column not in column_names:
244
+ raise ValueError(
245
+ f"`--video_column` value '{video_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
246
+ )
247
+
248
+ if self.caption_column is None:
249
+ caption_column = column_names[1]
250
+ #logger.info(f"`caption_column` defaulting to {caption_column}")
251
+ print(f"`caption_column` defaulting to {caption_column}")
252
+ else:
253
+ caption_column = self.caption_column
254
+ if self.caption_column not in column_names:
255
+ raise ValueError(
256
+ f"`--caption_column` value '{self.caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
257
+ )
258
+
259
+ instance_prompts = dataset["train"][caption_column]
260
+ instance_videos = [Path(self.instance_data_root, filepath) for filepath in dataset["train"][video_column]]
261
+
262
+ return instance_prompts, instance_videos
263
+
264
+ def _load_dataset_from_local_path(self):
265
+ if not self.instance_data_root.exists():
266
+ raise ValueError("Instance videos root folder does not exist")
267
+
268
+ prompt_path = self.instance_data_root.joinpath(self.caption_column)
269
+ video_path = self.instance_data_root.joinpath(self.video_column)
270
+
271
+ if not prompt_path.exists() or not prompt_path.is_file():
272
+ raise ValueError(
273
+ "Expected `--caption_column` to be path to a file in `--instance_data_root` containing line-separated text prompts."
274
+ )
275
+ if not video_path.exists() or not video_path.is_file():
276
+ raise ValueError(
277
+ "Expected `--video_column` to be path to a file in `--instance_data_root` containing line-separated paths to video data in the same directory."
278
+ )
279
+
280
+ with open(prompt_path, "r", encoding="utf-8") as file:
281
+ instance_prompts = [line.strip() for line in file.readlines() if len(line.strip()) > 0]
282
+ with open(video_path, "r", encoding="utf-8") as file:
283
+ instance_videos = [
284
+ self.instance_data_root.joinpath(line.strip()) for line in file.readlines() if len(line.strip()) > 0
285
+ ]
286
+
287
+ if any(not path.is_file() for path in instance_videos):
288
+ raise ValueError(
289
+ "Expected '--video_column' to be a path to a file in `--instance_data_root` containing line-separated paths to video data but found atleast one path that is not a valid file."
290
+ )
291
+
292
+ return instance_prompts, instance_videos
293
+
294
+ def _resize_for_rectangle_crop(self, arr):
295
+ image_size = self.height, self.width
296
+ reshape_mode = self.video_reshape_mode
297
+ if arr.shape[3] / arr.shape[2] > image_size[1] / image_size[0]:
298
+ arr = resize(
299
+ arr,
300
+ size=[image_size[0], int(arr.shape[3] * image_size[0] / arr.shape[2])],
301
+ interpolation=InterpolationMode.BICUBIC,
302
+ )
303
+ else:
304
+ arr = resize(
305
+ arr,
306
+ size=[int(arr.shape[2] * image_size[1] / arr.shape[3]), image_size[1]],
307
+ interpolation=InterpolationMode.BICUBIC,
308
+ )
309
+
310
+ h, w = arr.shape[2], arr.shape[3]
311
+ arr = arr.squeeze(0)
312
+
313
+ delta_h = h - image_size[0]
314
+ delta_w = w - image_size[1]
315
+
316
+ if reshape_mode == "random" or reshape_mode == "none":
317
+ top = np.random.randint(0, delta_h + 1)
318
+ left = np.random.randint(0, delta_w + 1)
319
+ elif reshape_mode == "center":
320
+ top, left = delta_h // 2, delta_w // 2
321
+ else:
322
+ raise NotImplementedError
323
+ arr = TT.functional.crop(arr, top=top, left=left, height=image_size[0], width=image_size[1])
324
+ return arr
325
+
326
+
327
+ # here process the all data, we should make these processed in the get_item or other position
328
+
329
+ def _preprocess_data(self):
330
+
331
+
332
+ decord.bridge.set_bridge("torch")
333
+
334
+ progress_dataset_bar = tqdm(
335
+ range(0, len(self.instance_video_paths)),
336
+ desc="Loading progress resize and crop videos",
337
+ )
338
+
339
+ videos = []
340
+
341
+ for filename in self.instance_video_paths:
342
+ video_reader = decord.VideoReader(uri=filename.as_posix())
343
+ video_num_frames = len(video_reader)
344
+
345
+ start_frame = min(self.skip_frames_start, video_num_frames)
346
+ end_frame = max(0, video_num_frames - self.skip_frames_end)
347
+ if end_frame <= start_frame:
348
+ frames = video_reader.get_batch([start_frame])
349
+ elif end_frame - start_frame <= self.max_num_frames:
350
+ frames = video_reader.get_batch(list(range(start_frame, end_frame)))
351
+ else:
352
+ indices = list(range(start_frame, end_frame, (end_frame - start_frame) // self.max_num_frames))
353
+ frames = video_reader.get_batch(indices)
354
+
355
+ # Ensure that we don't go over the limit
356
+ frames = frames[: self.max_num_frames]
357
+ selected_num_frames = frames.shape[0]
358
+
359
+ # Choose first (4k + 1) frames as this is how many is required by the VAE
360
+ remainder = (3 + (selected_num_frames % 4)) % 4
361
+ if remainder != 0:
362
+ frames = frames[:-remainder]
363
+ selected_num_frames = frames.shape[0]
364
+
365
+ assert (selected_num_frames - 1) % 4 == 0
366
+
367
+ # Training transforms
368
+
369
+ frames = frames.permute(0, 3, 1, 2) # [F, C, H, W]
370
+ progress_dataset_bar.set_description(
371
+ f"Loading progress Resizing video from {frames.shape[2]}x{frames.shape[3]} to {self.height}x{self.width}"
372
+ )
373
+ frames = self._resize_for_rectangle_crop(frames) #here the tensor should be processed to right size
374
+
375
+ frames = (frames - 127.5) / 127.5
376
+ videos.append(frames.contiguous()) # [F, C, H, W]
377
+ progress_dataset_bar.update(1)
378
+
379
+ progress_dataset_bar.close()
380
+
381
+ return videos
382
+
383
+
384
+
385
+
386
+ if __name__=="__main__":
387
+ train_dataset = Sakuga_Dataset(
388
+ instance_data_root='',
389
+ height= 480,
390
+ width= 720,
391
+ video_reshape_mode="center",
392
+ fps=8,
393
+ max_num_frames=49,
394
+ skip_frames_start=0,
395
+ skip_frames_end=0,
396
+ cache_dir="~/.cache",
397
+ id_token="",
398
+ data_information="../../../Datasets/SakugaDataset/parquet/fliter_59_aesthetic_precise.parquet"
399
+ )
400
+ data=train_dataset.__getitem__(0)
401
+ print(data["instance_video"].shape)
Dataset/sakuga_dataset_auto.py ADDED
@@ -0,0 +1,412 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from datetime import timedelta
3
+ from pathlib import Path
4
+ from typing import List, Optional, Tuple, Union
5
+ from torch.utils.data import DataLoader, Dataset
6
+ from tqdm.auto import tqdm
7
+ from torchvision.transforms.functional import center_crop, resize
8
+ from torchvision.transforms import InterpolationMode
9
+ import torchvision.transforms as TT
10
+ import numpy as np
11
+ import accelerate
12
+ import torch
13
+ import pandas as pd
14
+ from pathlib import PosixPath
15
+ import os
16
+ from datetime import datetime
17
+ import random
18
+
19
+ try:
20
+ import decord
21
+ except ImportError:
22
+ raise ImportError(
23
+ "The `decord` package is required for loading the video dataset. Install with `pip install decord`"
24
+ )
25
+ decord.bridge.set_bridge("torch")
26
+
27
+
28
+ class Sakuga_Dataset_auto(Dataset):
29
+ def __init__(
30
+ self,
31
+ instance_data_root: Optional[str] = None,
32
+ sketch_data_root: Optional[str] = None,
33
+ dataset_name: Optional[str] = None,
34
+ dataset_config_name: Optional[str] = None,
35
+ caption_column: str = "text",
36
+ video_column: str = "video",
37
+ height: int = 480,
38
+ width: int = 720,
39
+ video_reshape_mode: str = "center",
40
+ fps: int = 8,
41
+ max_num_frames: int = 49,
42
+ skip_frames_start: int = 0,
43
+ skip_frames_end: int = 0,
44
+ cache_dir: Optional[str] = None,
45
+ id_token: Optional[str] = None,
46
+ data_information: Optional[str] = None,
47
+ stage: Optional[str] = "1",
48
+ ) -> None:
49
+ super().__init__()
50
+
51
+ self.instance_data_root = Path(instance_data_root) if instance_data_root is not None else None
52
+ self.sketch_data_root = Path(sketch_data_root) if sketch_data_root is not None else None
53
+ self.dataset_name = dataset_name
54
+ self.dataset_config_name = dataset_config_name
55
+ self.caption_column = caption_column
56
+ self.video_column = video_column
57
+ self.height = height
58
+ self.width = width
59
+ self.video_reshape_mode = video_reshape_mode
60
+ self.fps = fps
61
+ self.max_num_frames = max_num_frames
62
+ self.skip_frames_start = skip_frames_start
63
+ self.skip_frames_end = skip_frames_end
64
+ self.cache_dir = cache_dir
65
+ self.id_token = id_token or ""
66
+ self.stage=stage
67
+
68
+ '''
69
+ if dataset_name is not None:
70
+ self.instance_prompts, self.instance_video_paths = self._load_dataset_from_hub()
71
+ else:
72
+ self.instance_prompts, self.instance_video_paths = self._load_dataset_from_local_path()
73
+ '''
74
+
75
+ self.data_information=pd.read_parquet(data_information)
76
+ self.num_instance_videos = self.data_information.shape[0]
77
+
78
+
79
+ #self.detector = LineartDetector('cpu')
80
+ #TODO: here just point the cuda maybe have some problem
81
+
82
+ #we put the preprocess_data() in the get_item function
83
+ #self.instance_videos = self._preprocess_data()
84
+ #here, how to make it in the get_item?
85
+
86
+ def __len__(self):
87
+ return self.num_instance_videos
88
+
89
+ def encode_video(self, video,vae,device):
90
+
91
+
92
+ #vae,device
93
+ video = video.to(device, dtype=vae.dtype).unsqueeze(0)
94
+ video = video.permute(0, 2, 1, 3, 4) # [B, C, F, H, W]
95
+ image = video[:, :, :1].clone()
96
+
97
+ latent_dist = vae.encode(video).latent_dist
98
+
99
+ image_noise_sigma = torch.normal(mean=-3.0, std=0.5, size=(1,), device=image.device)
100
+ image_noise_sigma = torch.exp(image_noise_sigma).to(dtype=image.dtype)
101
+ noisy_image = torch.randn_like(image) * image_noise_sigma[:, None, None, None, None]
102
+ image_latent_dist = vae.encode(noisy_image).latent_dist
103
+
104
+ return latent_dist, image_latent_dist
105
+
106
+ def read_video(self,video_path):
107
+ filename=PosixPath(video_path)
108
+
109
+ #this part have some wrong things
110
+ try:
111
+ video_reader = decord.VideoReader(uri=filename.as_posix())
112
+ video_num_frames = len(video_reader)
113
+
114
+ #需不需要这里强制一下从第10帧开始?
115
+ start_frame = min(self.skip_frames_start, video_num_frames)
116
+ end_frame = max(0, video_num_frames - self.skip_frames_end)
117
+ # if end_frame <= start_frame:
118
+ # frames = video_reader.get_batch([start_frame])
119
+ if end_frame - start_frame <= self.max_num_frames:
120
+ frames = video_reader.get_batch(list(range(start_frame, end_frame)))
121
+ else:
122
+ #this has problem
123
+ #indices = list(range(start_frame, end_frame, (end_frame - start_frame) // self.max_num_frames))
124
+
125
+
126
+ indices=list(range(start_frame,self.max_num_frames))
127
+ frames = video_reader.get_batch(indices)
128
+
129
+
130
+ s = random.randint(0, self.max_num_frames - 241)
131
+ d=s+241
132
+
133
+ frames = frames[s: d+1]
134
+ selected_num_frames = frames.shape[0]
135
+
136
+ # Choose first (4k + 1) frames as this is how many is required by the VAE
137
+ remainder = (3 + (selected_num_frames % 4)) % 4
138
+ if remainder != 0:
139
+ frames = frames[:-remainder]
140
+ selected_num_frames = frames.shape[0]
141
+
142
+ assert (selected_num_frames - 1) % 4 == 0
143
+
144
+ # Training transforms
145
+
146
+ frames = frames.permute(0, 3, 1, 2) # [F, C, H, W]
147
+ #print("frame",frames.shape)
148
+
149
+ frames = self._resize_for_rectangle_crop(frames)
150
+ final_frames = frames.contiguous()
151
+ if final_frames.dim()==3:
152
+ final_frames=final_frames.unsqueeze(0)
153
+
154
+ #print("here",final_frames.shape)
155
+ memory_video=final_frames[0:-81].permute(0,2,3,1).contiguous()
156
+ reward_video=final_frames[-81:].permute(0,2,3,1).contiguous()
157
+ #print("here",memory_video.shape)
158
+ return final_frames,memory_video,reward_video
159
+ except:
160
+ return None
161
+
162
+
163
+
164
+ def __getitem__(self, index):
165
+
166
+ #output_video=self.encode_video(video,vae,device)
167
+ #_encode_instance_video=self.encode_video(self.instance_prompts[index],device=)
168
+
169
+ #处理selfinstance_videos
170
+
171
+ folder_path=os.path.join(self.instance_data_root, str(self.data_information.iloc[index]['identifier_video']))
172
+
173
+
174
+
175
+ frames=self.data_information.iloc[index]["start_frame"]
176
+ video_name=self.data_information.iloc[index]["identifier"].split(':')[0]
177
+
178
+
179
+ data_path_1=f'{video_name}-Scene-{frames}.mp4'
180
+ data_path_2=f'{video_name}-Scene-{frames+1}.mp4'
181
+ data_path_3=f'{video_name}-Scene-{frames-1}.mp4'
182
+
183
+
184
+ fd1=os.path.join(folder_path,data_path_1)
185
+
186
+ fd2=os.path.join(folder_path,data_path_2)
187
+
188
+ fd3=os.path.join(folder_path,data_path_3)
189
+
190
+
191
+
192
+
193
+ if os.path.exists(fd1):
194
+ file_path=fd1
195
+ elif os.path.exists(fd2):
196
+ file_path=fd2
197
+ elif os.path.exists(fd3):
198
+ file_path=fd3
199
+
200
+
201
+
202
+
203
+ prompt=self.data_information.iloc[index]["text_description"]
204
+
205
+ final_frames,memory_video,reward_video=self.read_video(PosixPath(file_path))
206
+ global_frame=final_frames[0]
207
+ final_frames=final_frames[-81:]
208
+
209
+ final_sketch_frames=None
210
+
211
+
212
+
213
+ memory_video_choice= random.choices([0, 1], weights=[0.6, 0.4], k=1)[0]
214
+
215
+
216
+ instance_prompt = prompt + self.id_token
217
+
218
+ return {
219
+ "instance_prompt": instance_prompt,
220
+ "instance_video": final_frames,
221
+ "file_path":file_path,
222
+ "sketch_video": final_sketch_frames,
223
+ "instance_image": global_frame,
224
+ "memory_video":memory_video,
225
+ "reward_video":reward_video,
226
+ #"instance_sketch": final_sketch,
227
+ }
228
+
229
+ def _load_dataset_from_hub(self):
230
+ try:
231
+ from datasets import load_dataset
232
+ except ImportError:
233
+ raise ImportError(
234
+ "You are trying to load your data using the datasets library. If you wish to train using custom "
235
+ "captions please install the datasets library: `pip install datasets`. If you wish to load a "
236
+ "local folder containing images only, specify --instance_data_root instead."
237
+ )
238
+
239
+ # Downloading and loading a dataset from the hub. See more about loading custom images at
240
+ # https://huggingface.co/docs/datasets/v2.0.0/en/dataset_script
241
+ dataset = load_dataset(
242
+ self.dataset_name,
243
+ self.dataset_config_name,
244
+ cache_dir=self.cache_dir,
245
+ )
246
+ column_names = dataset["train"].column_names
247
+
248
+ if self.video_column is None:
249
+ video_column = column_names[0]
250
+ #logger.info(f"`video_column` defaulting to {video_column}")
251
+ print(f"`video_column` defaulting to {video_column}")
252
+ else:
253
+ video_column = self.video_column
254
+ if video_column not in column_names:
255
+ raise ValueError(
256
+ f"`--video_column` value '{video_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
257
+ )
258
+
259
+ if self.caption_column is None:
260
+ caption_column = column_names[1]
261
+ #logger.info(f"`caption_column` defaulting to {caption_column}")
262
+ print(f"`caption_column` defaulting to {caption_column}")
263
+ else:
264
+ caption_column = self.caption_column
265
+ if self.caption_column not in column_names:
266
+ raise ValueError(
267
+ f"`--caption_column` value '{self.caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
268
+ )
269
+
270
+ instance_prompts = dataset["train"][caption_column]
271
+ instance_videos = [Path(self.instance_data_root, filepath) for filepath in dataset["train"][video_column]]
272
+
273
+ return instance_prompts, instance_videos
274
+
275
+ def _load_dataset_from_local_path(self):
276
+ if not self.instance_data_root.exists():
277
+ raise ValueError("Instance videos root folder does not exist")
278
+
279
+ prompt_path = self.instance_data_root.joinpath(self.caption_column)
280
+ video_path = self.instance_data_root.joinpath(self.video_column)
281
+
282
+ if not prompt_path.exists() or not prompt_path.is_file():
283
+ raise ValueError(
284
+ "Expected `--caption_column` to be path to a file in `--instance_data_root` containing line-separated text prompts."
285
+ )
286
+ if not video_path.exists() or not video_path.is_file():
287
+ raise ValueError(
288
+ "Expected `--video_column` to be path to a file in `--instance_data_root` containing line-separated paths to video data in the same directory."
289
+ )
290
+
291
+ with open(prompt_path, "r", encoding="utf-8") as file:
292
+ instance_prompts = [line.strip() for line in file.readlines() if len(line.strip()) > 0]
293
+ with open(video_path, "r", encoding="utf-8") as file:
294
+ instance_videos = [
295
+ self.instance_data_root.joinpath(line.strip()) for line in file.readlines() if len(line.strip()) > 0
296
+ ]
297
+
298
+ if any(not path.is_file() for path in instance_videos):
299
+ raise ValueError(
300
+ "Expected '--video_column' to be a path to a file in `--instance_data_root` containing line-separated paths to video data but found atleast one path that is not a valid file."
301
+ )
302
+
303
+ return instance_prompts, instance_videos
304
+
305
+ def _resize_for_rectangle_crop(self, arr):
306
+ image_size = self.height, self.width
307
+ reshape_mode = self.video_reshape_mode
308
+ if arr.shape[3] / arr.shape[2] > image_size[1] / image_size[0]:
309
+ arr = resize(
310
+ arr,
311
+ size=[image_size[0], int(arr.shape[3] * image_size[0] / arr.shape[2])],
312
+ interpolation=InterpolationMode.BICUBIC,
313
+ )
314
+ else:
315
+ arr = resize(
316
+ arr,
317
+ size=[int(arr.shape[2] * image_size[1] / arr.shape[3]), image_size[1]],
318
+ interpolation=InterpolationMode.BICUBIC,
319
+ )
320
+
321
+ h, w = arr.shape[2], arr.shape[3]
322
+ arr = arr.squeeze(0)
323
+
324
+ delta_h = h - image_size[0]
325
+ delta_w = w - image_size[1]
326
+
327
+ if reshape_mode == "random" or reshape_mode == "none":
328
+ top = np.random.randint(0, delta_h + 1)
329
+ left = np.random.randint(0, delta_w + 1)
330
+ elif reshape_mode == "center":
331
+ top, left = delta_h // 2, delta_w // 2
332
+ else:
333
+ raise NotImplementedError
334
+ arr = TT.functional.crop(arr, top=top, left=left, height=image_size[0], width=image_size[1])
335
+ return arr
336
+
337
+
338
+ # here process the all data, we should make these processed in the get_item or other position
339
+
340
+ def _preprocess_data(self):
341
+
342
+
343
+ decord.bridge.set_bridge("torch")
344
+
345
+ progress_dataset_bar = tqdm(
346
+ range(0, len(self.instance_video_paths)),
347
+ desc="Loading progress resize and crop videos",
348
+ )
349
+
350
+ videos = []
351
+
352
+ for filename in self.instance_video_paths:
353
+ video_reader = decord.VideoReader(uri=filename.as_posix())
354
+ video_num_frames = len(video_reader)
355
+
356
+ start_frame = min(self.skip_frames_start, video_num_frames)
357
+ end_frame = max(0, video_num_frames - self.skip_frames_end)
358
+ if end_frame <= start_frame:
359
+ frames = video_reader.get_batch([start_frame])
360
+ elif end_frame - start_frame <= self.max_num_frames:
361
+ frames = video_reader.get_batch(list(range(start_frame, end_frame)))
362
+ else:
363
+ indices = list(range(start_frame, end_frame, (end_frame - start_frame) // self.max_num_frames))
364
+ frames = video_reader.get_batch(indices)
365
+
366
+ # Ensure that we don't go over the limit
367
+ frames = frames[: self.max_num_frames]
368
+ selected_num_frames = frames.shape[0]
369
+
370
+ # Choose first (4k + 1) frames as this is how many is required by the VAE
371
+ remainder = (3 + (selected_num_frames % 4)) % 4
372
+ if remainder != 0:
373
+ frames = frames[:-remainder]
374
+ selected_num_frames = frames.shape[0]
375
+
376
+ assert (selected_num_frames - 1) % 4 == 0
377
+
378
+ # Training transforms
379
+
380
+ frames = frames.permute(0, 3, 1, 2) # [F, C, H, W]
381
+ progress_dataset_bar.set_description(
382
+ f"Loading progress Resizing video from {frames.shape[2]}x{frames.shape[3]} to {self.height}x{self.width}"
383
+ )
384
+ frames = self._resize_for_rectangle_crop(frames) #here the tensor should be processed to right size
385
+
386
+ frames = (frames - 127.5) / 127.5
387
+ videos.append(frames.contiguous()) # [F, C, H, W]
388
+ progress_dataset_bar.update(1)
389
+
390
+ progress_dataset_bar.close()
391
+
392
+ return videos
393
+
394
+
395
+
396
+
397
+ if __name__=="__main__":
398
+ train_dataset = Sakuga_Dataset_auto(
399
+ instance_data_root='',
400
+ height= 480,
401
+ width= 720,
402
+ video_reshape_mode="center",
403
+ fps=8,
404
+ max_num_frames=49,
405
+ skip_frames_start=0,
406
+ skip_frames_end=0,
407
+ cache_dir="~/.cache",
408
+ id_token="",
409
+ data_information="../../../Datasets/SakugaDataset/parquet/fliter_59_aesthetic_precise.parquet"
410
+ )
411
+ data=train_dataset.__getitem__(0)
412
+ print(data["instance_video"].shape)
Dataset/video_dataset.py ADDED
@@ -0,0 +1,333 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from datetime import timedelta
3
+ from pathlib import Path
4
+ from typing import List, Optional, Tuple, Union
5
+ from torch.utils.data import DataLoader, Dataset
6
+ from tqdm.auto import tqdm
7
+ from lineart_extractor.annotator.lineart import LineartDetector
8
+ from torchvision.transforms.functional import center_crop, resize
9
+ from torchvision.transforms import InterpolationMode
10
+ import torchvision.transforms as TT
11
+ import numpy as np
12
+ import accelerate
13
+ import torch
14
+
15
+
16
+
17
+ try:
18
+ import decord
19
+ except ImportError:
20
+ raise ImportError(
21
+ "The `decord` package is required for loading the video dataset. Install with `pip install decord`"
22
+ )
23
+ decord.bridge.set_bridge("torch")
24
+
25
+
26
+ class VideoDataset(Dataset):
27
+ def __init__(
28
+ self,
29
+ instance_data_root: Optional[str] = None,
30
+ dataset_name: Optional[str] = None,
31
+ dataset_config_name: Optional[str] = None,
32
+ caption_column: str = "text",
33
+ video_column: str = "video",
34
+ height: int = 480,
35
+ width: int = 720,
36
+ video_reshape_mode: str = "center",
37
+ fps: int = 8,
38
+ max_num_frames: int = 49,
39
+ skip_frames_start: int = 0,
40
+ skip_frames_end: int = 0,
41
+ cache_dir: Optional[str] = None,
42
+ id_token: Optional[str] = None,
43
+ ) -> None:
44
+ super().__init__()
45
+
46
+ self.instance_data_root = Path(instance_data_root) if instance_data_root is not None else None
47
+ self.dataset_name = dataset_name
48
+ self.dataset_config_name = dataset_config_name
49
+ self.caption_column = caption_column
50
+ self.video_column = video_column
51
+ self.height = height
52
+ self.width = width
53
+ self.video_reshape_mode = video_reshape_mode
54
+ self.fps = fps
55
+ self.max_num_frames = max_num_frames
56
+ self.skip_frames_start = skip_frames_start
57
+ self.skip_frames_end = skip_frames_end
58
+ self.cache_dir = cache_dir
59
+ self.id_token = id_token or ""
60
+
61
+ if dataset_name is not None:
62
+ self.instance_prompts, self.instance_video_paths = self._load_dataset_from_hub()
63
+ else:
64
+ self.instance_prompts, self.instance_video_paths = self._load_dataset_from_local_path()
65
+
66
+ self.instance_prompts = [self.id_token + prompt for prompt in self.instance_prompts]
67
+
68
+ self.num_instance_videos = len(self.instance_video_paths)
69
+ if self.num_instance_videos != len(self.instance_prompts):
70
+ raise ValueError(
71
+ f"Expected length of instance prompts and videos to be the same but found {len(self.instance_prompts)=} and {len(self.instance_video_paths)=}. Please ensure that the number of caption prompts and videos match in your dataset."
72
+ )
73
+ #self.detector = LineartDetector('cpu')
74
+ #TODO: here just point the cuda maybe have some problem
75
+
76
+ #we put the preprocess_data() in the get_item function
77
+ #self.instance_videos = self._preprocess_data()
78
+ #here, how to make it in the get_item?
79
+
80
+ def __len__(self):
81
+ return self.num_instance_videos
82
+
83
+ def encode_video(self, video,vae,device):
84
+
85
+ #vae,device
86
+ video = video.to(device, dtype=vae.dtype).unsqueeze(0)
87
+ video = video.permute(0, 2, 1, 3, 4) # [B, C, F, H, W]
88
+ image = video[:, :, :1].clone()
89
+
90
+ latent_dist = vae.encode(video).latent_dist
91
+
92
+ image_noise_sigma = torch.normal(mean=-3.0, std=0.5, size=(1,), device=image.device)
93
+ image_noise_sigma = torch.exp(image_noise_sigma).to(dtype=image.dtype)
94
+ noisy_image = torch.randn_like(image) * image_noise_sigma[:, None, None, None, None]
95
+ image_latent_dist = vae.encode(noisy_image).latent_dist
96
+
97
+ return latent_dist, image_latent_dist
98
+
99
+ def __getitem__(self, index):
100
+
101
+ #output_video=self.encode_video(video,vae,device)
102
+ #_encode_instance_video=self.encode_video(self.instance_prompts[index],device=)
103
+
104
+ #处理selfinstance_videos
105
+
106
+
107
+ filename = self.instance_video_paths[index]
108
+ video_reader = decord.VideoReader(uri=filename.as_posix())
109
+ video_num_frames = len(video_reader)
110
+
111
+ start_frame = min(self.skip_frames_start, video_num_frames)
112
+ end_frame = max(0, video_num_frames - self.skip_frames_end)
113
+ if end_frame <= start_frame:
114
+ frames = video_reader.get_batch([start_frame])
115
+ elif end_frame - start_frame <= self.max_num_frames:
116
+ frames = video_reader.get_batch(list(range(start_frame, end_frame)))
117
+ else:
118
+ indices = list(range(start_frame, end_frame, (end_frame - start_frame) // self.max_num_frames))
119
+ frames = video_reader.get_batch(indices)
120
+
121
+ # Ensure that we don't go over the limit
122
+ frames = frames[: self.max_num_frames]
123
+ selected_num_frames = frames.shape[0]
124
+
125
+ # Choose first (4k + 1) frames as this is how many is required by the VAE
126
+ remainder = (3 + (selected_num_frames % 4)) % 4
127
+ if remainder != 0:
128
+ frames = frames[:-remainder]
129
+ selected_num_frames = frames.shape[0]
130
+
131
+ assert (selected_num_frames - 1) % 4 == 0
132
+
133
+ # Training transforms
134
+
135
+ frames = frames.permute(0, 3, 1, 2) # [F, C, H, W]
136
+ frames = self._resize_for_rectangle_crop(frames)
137
+ final_frames = frames.contiguous()
138
+
139
+ # [F, C, H, W]
140
+ # with torch.no_grad():
141
+ # sketch = self.detector(final_frames,coarse=False)
142
+ # #sketch应该被增加成三通道的,方便后续的处理
143
+
144
+ # sketch=sketch.repeat(1,3,1,1)
145
+ # sketch = (sketch - 0.5) / 0.5
146
+ # final_sketch=sketch.contiguous()
147
+
148
+
149
+ #print("Frames is contiguous after arithmetic operations:", final_frames.is_contiguous())
150
+
151
+ # for i in range(selected_num_frames):
152
+ # np_img = np.array(Image.open(img_path).convert('RGB').resize((720,480)))
153
+ # with torch.no_grad():
154
+ # sketch = detector(np_img, coarse=False)
155
+
156
+ # sketch = (sketch - 127.5) / 127.5
157
+ # sketch = sketch.permute(0, 3, 1, 2) # [F, C, H, W]
158
+ # sketch = self._resize_for_rectangle_crop(sketch)
159
+ # final_sketch=final_sketch.contiguous() # [F, C, H, W]
160
+ #here is tensor framse
161
+
162
+ return {
163
+ "instance_prompt": self.instance_prompts[index],
164
+ "instance_video": final_frames,
165
+ #"instance_sketch": final_sketch,
166
+ }
167
+
168
+ def _load_dataset_from_hub(self):
169
+ try:
170
+ from datasets import load_dataset
171
+ except ImportError:
172
+ raise ImportError(
173
+ "You are trying to load your data using the datasets library. If you wish to train using custom "
174
+ "captions please install the datasets library: `pip install datasets`. If you wish to load a "
175
+ "local folder containing images only, specify --instance_data_root instead."
176
+ )
177
+
178
+ # Downloading and loading a dataset from the hub. See more about loading custom images at
179
+ # https://huggingface.co/docs/datasets/v2.0.0/en/dataset_script
180
+ dataset = load_dataset(
181
+ self.dataset_name,
182
+ self.dataset_config_name,
183
+ cache_dir=self.cache_dir,
184
+ )
185
+ column_names = dataset["train"].column_names
186
+
187
+ if self.video_column is None:
188
+ video_column = column_names[0]
189
+ #logger.info(f"`video_column` defaulting to {video_column}")
190
+ print(f"`video_column` defaulting to {video_column}")
191
+ else:
192
+ video_column = self.video_column
193
+ if video_column not in column_names:
194
+ raise ValueError(
195
+ f"`--video_column` value '{video_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
196
+ )
197
+
198
+ if self.caption_column is None:
199
+ caption_column = column_names[1]
200
+ #logger.info(f"`caption_column` defaulting to {caption_column}")
201
+ print(f"`caption_column` defaulting to {caption_column}")
202
+ else:
203
+ caption_column = self.caption_column
204
+ if self.caption_column not in column_names:
205
+ raise ValueError(
206
+ f"`--caption_column` value '{self.caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
207
+ )
208
+
209
+ instance_prompts = dataset["train"][caption_column]
210
+ instance_videos = [Path(self.instance_data_root, filepath) for filepath in dataset["train"][video_column]]
211
+
212
+ return instance_prompts, instance_videos
213
+
214
+ def _load_dataset_from_local_path(self):
215
+ if not self.instance_data_root.exists():
216
+ raise ValueError("Instance videos root folder does not exist")
217
+
218
+ prompt_path = self.instance_data_root.joinpath(self.caption_column)
219
+ video_path = self.instance_data_root.joinpath(self.video_column)
220
+
221
+ if not prompt_path.exists() or not prompt_path.is_file():
222
+ raise ValueError(
223
+ "Expected `--caption_column` to be path to a file in `--instance_data_root` containing line-separated text prompts."
224
+ )
225
+ if not video_path.exists() or not video_path.is_file():
226
+ raise ValueError(
227
+ "Expected `--video_column` to be path to a file in `--instance_data_root` containing line-separated paths to video data in the same directory."
228
+ )
229
+
230
+ with open(prompt_path, "r", encoding="utf-8") as file:
231
+ instance_prompts = [line.strip() for line in file.readlines() if len(line.strip()) > 0]
232
+ with open(video_path, "r", encoding="utf-8") as file:
233
+ instance_videos = [
234
+ self.instance_data_root.joinpath(line.strip()) for line in file.readlines() if len(line.strip()) > 0
235
+ ]
236
+
237
+ if any(not path.is_file() for path in instance_videos):
238
+ raise ValueError(
239
+ "Expected '--video_column' to be a path to a file in `--instance_data_root` containing line-separated paths to video data but found atleast one path that is not a valid file."
240
+ )
241
+
242
+ return instance_prompts, instance_videos
243
+
244
+ def _resize_for_rectangle_crop(self, arr):
245
+ image_size = self.height, self.width
246
+ reshape_mode = self.video_reshape_mode
247
+ if arr.shape[3] / arr.shape[2] > image_size[1] / image_size[0]:
248
+ arr = resize(
249
+ arr,
250
+ size=[image_size[0], int(arr.shape[3] * image_size[0] / arr.shape[2])],
251
+ interpolation=InterpolationMode.BICUBIC,
252
+ )
253
+ else:
254
+ arr = resize(
255
+ arr,
256
+ size=[int(arr.shape[2] * image_size[1] / arr.shape[3]), image_size[1]],
257
+ interpolation=InterpolationMode.BICUBIC,
258
+ )
259
+
260
+ h, w = arr.shape[2], arr.shape[3]
261
+ arr = arr.squeeze(0)
262
+
263
+ delta_h = h - image_size[0]
264
+ delta_w = w - image_size[1]
265
+
266
+ if reshape_mode == "random" or reshape_mode == "none":
267
+ top = np.random.randint(0, delta_h + 1)
268
+ left = np.random.randint(0, delta_w + 1)
269
+ elif reshape_mode == "center":
270
+ top, left = delta_h // 2, delta_w // 2
271
+ else:
272
+ raise NotImplementedError
273
+ arr = TT.functional.crop(arr, top=top, left=left, height=image_size[0], width=image_size[1])
274
+ return arr
275
+
276
+
277
+ # here process the all data, we should make these processed in the get_item or other position
278
+
279
+ def _preprocess_data(self):
280
+
281
+
282
+ decord.bridge.set_bridge("torch")
283
+
284
+ progress_dataset_bar = tqdm(
285
+ range(0, len(self.instance_video_paths)),
286
+ desc="Loading progress resize and crop videos",
287
+ )
288
+
289
+ videos = []
290
+
291
+ for filename in self.instance_video_paths:
292
+ video_reader = decord.VideoReader(uri=filename.as_posix())
293
+ video_num_frames = len(video_reader)
294
+
295
+ start_frame = min(self.skip_frames_start, video_num_frames)
296
+ end_frame = max(0, video_num_frames - self.skip_frames_end)
297
+ if end_frame <= start_frame:
298
+ frames = video_reader.get_batch([start_frame])
299
+ elif end_frame - start_frame <= self.max_num_frames:
300
+ frames = video_reader.get_batch(list(range(start_frame, end_frame)))
301
+ else:
302
+ indices = list(range(start_frame, end_frame, (end_frame - start_frame) // self.max_num_frames))
303
+ frames = video_reader.get_batch(indices)
304
+
305
+ # Ensure that we don't go over the limit
306
+ frames = frames[: self.max_num_frames]
307
+ selected_num_frames = frames.shape[0]
308
+
309
+ # Choose first (4k + 1) frames as this is how many is required by the VAE
310
+ remainder = (3 + (selected_num_frames % 4)) % 4
311
+ if remainder != 0:
312
+ frames = frames[:-remainder]
313
+ selected_num_frames = frames.shape[0]
314
+
315
+ assert (selected_num_frames - 1) % 4 == 0
316
+
317
+ # Training transforms
318
+
319
+ frames = frames.permute(0, 3, 1, 2) # [F, C, H, W]
320
+ progress_dataset_bar.set_description(
321
+ f"Loading progress Resizing video from {frames.shape[2]}x{frames.shape[3]} to {self.height}x{self.width}"
322
+ )
323
+ frames = self._resize_for_rectangle_crop(frames) #here the tensor should be processed to right size
324
+
325
+ frames = (frames - 127.5) / 127.5
326
+ videos.append(frames.contiguous()) # [F, C, H, W]
327
+ progress_dataset_bar.update(1)
328
+
329
+ progress_dataset_bar.close()
330
+
331
+ return videos
332
+
333
+
Dataset/webds.py ADDED
@@ -0,0 +1,389 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ import io
3
+ import os
4
+ import re
5
+ import json
6
+ import tarfile
7
+ from functools import partial
8
+
9
+ import webdataset as wds
10
+ from webdataset import ResampledShards, DataPipeline, tarfile_to_samples
11
+ from webdataset.filters import pipelinefilter
12
+ from webdataset.tariterators import url_opener, group_by_keys
13
+ from webdataset.handlers import reraise_exception
14
+ from webdataset.gopen import gopen_schemes, gopen
15
+
16
+
17
+ def pytorch_worker_info(group=None): # sourcery skip: use-contextlib-suppress
18
+ """Return node and worker info for PyTorch and some distributed environments."""
19
+ rank = 0
20
+ world_size = 1
21
+ worker = 0
22
+ num_workers = 1
23
+ try:
24
+ import torch.distributed
25
+
26
+ if torch.distributed.is_available() and torch.distributed.is_initialized():
27
+ group = group or torch.distributed.group.WORLD
28
+ rank = torch.distributed.get_rank(group=group)
29
+ world_size = torch.distributed.get_world_size(group=group)
30
+ except ModuleNotFoundError:
31
+ pass
32
+ try:
33
+ import torch.utils.data
34
+
35
+ worker_info = torch.utils.data.get_worker_info()
36
+ if worker_info is not None:
37
+ worker = worker_info.id
38
+ num_workers = worker_info.num_workers
39
+ except ModuleNotFoundError:
40
+ pass
41
+
42
+ return rank, world_size, worker, num_workers
43
+
44
+
45
+ def pytorch_worker_seed(group=None):
46
+ """Compute a distinct, deterministic RNG seed for each worker and node."""
47
+ rank, world_size, worker, num_workers = pytorch_worker_info(group=group)
48
+ return rank * 1000 + worker
49
+
50
+
51
+ def worker_seed_sat(group=None, seed=0):
52
+ return pytorch_worker_seed(group=group) + seed * 23
53
+
54
+
55
+ class ConfiguredResampledShards(ResampledShards):
56
+ def __init__(self, urls, seed, nshards=sys.maxsize, deterministic=True):
57
+ from sat.helpers import print_rank0
58
+
59
+ try:
60
+ from megatron.core.parallel_state import get_data_parallel_group
61
+
62
+ group = get_data_parallel_group()
63
+ print_rank0("Using megatron data parallel group.")
64
+ except:
65
+ from sat.mpu import get_data_parallel_group
66
+
67
+ try:
68
+ group = get_data_parallel_group()
69
+ print_rank0("Using sat data parallel group.")
70
+ except AssertionError:
71
+ group = None
72
+ print_rank0("No data parallel group is specified!")
73
+ worker_seed_sat_this = partial(worker_seed_sat, group=group, seed=seed)
74
+ super().__init__(urls, nshards, worker_seed_sat_this, deterministic)
75
+
76
+
77
+ class SimpleDistributedWebDataset(DataPipeline):
78
+ def __init__(self, path, process_fn, seed, *, shuffle_buffer=1000):
79
+ # set shuffle_buffer = 1 to disable it, model-parallel will be different due to shuffle
80
+ try:
81
+ from sat.mpu import get_model_parallel_world_size
82
+
83
+ if get_model_parallel_world_size() > 1:
84
+ shuffle_buffer = 1
85
+ except Exception:
86
+ pass
87
+ super().__init__(
88
+ ConfiguredResampledShards(path, seed), # Lots of shards are recommended, or not evenly
89
+ tarfile_to_samples(),
90
+ wds.shuffle(shuffle_buffer),
91
+ process_fn,
92
+ )
93
+
94
+
95
+ def tar_file_iterator_with_meta(
96
+ fileobj, meta_names, skip_meta=r"__[^/]*__($|/)", suffix=None, handler=reraise_exception, meta_stream=None
97
+ ):
98
+ """Iterate over tar file, yielding filename, content pairs for the given tar stream.
99
+
100
+ :param fileobj: byte stream suitable for tarfile
101
+ :param meta_names: key of different items in meta file
102
+ :param skip_meta: regexp for keys that are skipped entirely (Default value = r"__[^/]*__($|/)")
103
+
104
+ """
105
+ stream = tarfile.open(fileobj=fileobj, mode="r|*")
106
+ data_dir, filename = fileobj.name.rsplit("/", 1)
107
+ meta_data = {} # {id: {meta_name: meta_value, meta_name2: meta_value2, ...}}
108
+
109
+ if meta_stream is None:
110
+ meta_file_name = filename.split(".")[0] + ".meta.jsonl"
111
+ meta_path = os.path.join(data_dir, meta_file_name)
112
+ if os.path.exists(meta_path):
113
+ meta_stream = open(meta_path, "r")
114
+ else:
115
+ meta_file_name = meta_stream.name
116
+
117
+ if meta_stream is not None:
118
+ for lineno, line in enumerate(meta_stream):
119
+ meta_list = []
120
+ try:
121
+ meta_list.append(json.loads(line))
122
+ except Exception as exn:
123
+ from sat.helpers import print_rank0
124
+
125
+ print_rank0(f"Error in loading jsonl {meta_file_name}, lineno {lineno}: {line}", level="DEBUG")
126
+ continue
127
+ for item in meta_list:
128
+ if not item["key"] in meta_data:
129
+ meta_data[item["key"]] = {}
130
+ for meta_name in meta_names:
131
+ if meta_name in item:
132
+ meta_data[item["key"]][meta_name] = item[meta_name]
133
+ meta_stream.close()
134
+
135
+ try:
136
+ for tarinfo in stream:
137
+ fname = tarinfo.name
138
+ try:
139
+ if not tarinfo.isreg():
140
+ continue
141
+ if fname is None:
142
+ continue
143
+ if "/" not in fname and fname.startswith("__") and fname.endswith("__"):
144
+ # skipping metadata for now
145
+ continue
146
+ if skip_meta is not None and re.match(skip_meta, fname):
147
+ continue
148
+ if fname.endswith(".txt") and suffix is not None:
149
+ data = (stream.extractfile(tarinfo).read().decode() + suffix).encode()
150
+ else:
151
+ data = stream.extractfile(tarinfo).read()
152
+ result = dict(fname=fname, data=data)
153
+ yield result
154
+
155
+ if fname.endswith(".id"):
156
+ fid = fname.split(".")[0]
157
+ if "-$#%@&" in fid:
158
+ sfid = fid.split("-$#%@&")[0]
159
+ else:
160
+ sfid = fid
161
+ meta_data_fid = meta_data.get(sfid, {})
162
+ for meta_name in meta_names:
163
+ meta_fname = fid + "." + meta_name
164
+ meta = meta_data_fid.get(meta_name, None)
165
+ yield dict(fname=meta_fname, data=meta)
166
+ stream.members = []
167
+ except Exception as exn:
168
+ if hasattr(exn, "args") and len(exn.args) > 0:
169
+ exn.args = (exn.args[0] + " @ " + str(fileobj),) + exn.args[1:]
170
+ if handler(exn):
171
+ continue
172
+ else:
173
+ break
174
+ except Exception as exn:
175
+ print(exn)
176
+ del stream
177
+
178
+
179
+ def tar_file_expander_with_meta(data, meta_names, handler=reraise_exception):
180
+ """Expand a stream of open tar files into a stream of tar file contents.
181
+
182
+ This returns an iterator over (filename, file_contents).
183
+ """
184
+ for source in data:
185
+ url = source["url"]
186
+ try:
187
+ assert isinstance(source, dict)
188
+ assert "stream" in source
189
+ for sample in tar_file_iterator_with_meta(source["stream"], meta_names, meta_stream=source["meta_stream"]):
190
+ assert isinstance(sample, dict) and "data" in sample and "fname" in sample
191
+ sample["__url__"] = url
192
+ yield sample
193
+ except Exception as exn:
194
+ exn.args = exn.args + (source.get("stream"), source.get("url"))
195
+ if handler(exn):
196
+ continue
197
+ else:
198
+ break
199
+
200
+
201
+ def url_opener(
202
+ data,
203
+ handler,
204
+ **kw,
205
+ ):
206
+ """Open URLs and yield a stream of url+stream pairs.
207
+
208
+ Args:
209
+ data: iterator over dict(url=...)
210
+ handler: exception handler.
211
+ kw: keyword arguments for gopen.gopen.
212
+
213
+ Yields:
214
+ a stream of url+stream pairs.
215
+ """
216
+ for sample in data:
217
+ assert isinstance(sample, dict), sample
218
+ assert "url" in sample
219
+ url = sample["url"]
220
+ try:
221
+ stream = gopen(url, **kw)
222
+ if hasattr(stream, "meta_stream"):
223
+ meta_stream = stream.meta_stream
224
+ del stream.meta_stream
225
+ else:
226
+ meta_stream = None
227
+ sample.update(stream=stream, meta_stream=meta_stream)
228
+ yield sample
229
+ except Exception as exn:
230
+ exn.args = exn.args + (url,)
231
+ if handler(exn):
232
+ continue
233
+ else:
234
+ break
235
+
236
+
237
+ def tarfile_samples_with_meta(src, meta_names, handler=reraise_exception):
238
+ streams = url_opener(src, handler=handler)
239
+ files = tar_file_expander_with_meta(streams, meta_names, handler)
240
+ samples = group_by_keys(files, handler=handler)
241
+ return samples
242
+
243
+
244
+ class MetaDistributedWebDataset(DataPipeline):
245
+ """WebDataset with meta information files
246
+ Extra Format:
247
+ in webdataset (tar), for each sample there is a '.id';
248
+ for each tar file, there is a '.meta.jsonl' file with the same name;
249
+ The '.meta.jsonl' file contains lines of json objects, each with a 'key' field to match '.id'.
250
+ """
251
+
252
+ def __init__(
253
+ self, path, process_fn, seed, *, meta_names=[], nshards=sys.maxsize, shuffle_buffer=1000, include_dirs=None
254
+ ):
255
+ # os.environ['WDS_SHOW_SEED'] = '1'
256
+ import torch
257
+
258
+ if torch.distributed.get_rank() == 0:
259
+ if include_dirs is not None: # /webdatasets/A,/webdatasets/C
260
+ other_paths = []
261
+ include_dirs = include_dirs.split(",")
262
+ for include_dir in include_dirs:
263
+ if "*" in include_dir:
264
+ include_dir, n = include_dir.split("*")
265
+ n = int(n)
266
+ else:
267
+ n = 1
268
+ for cur_dir, dirs, files in os.walk(include_dir):
269
+ for f in files:
270
+ if f.endswith("tar") and os.path.getsize(os.path.join(cur_dir, f)) > 0:
271
+ # other_paths.append(os.path.join(cur_dir,f))
272
+ other_paths.extend([os.path.join(cur_dir, f)] * n)
273
+ # print(f'Adding dataset paths {",".join(other_paths)}')
274
+ from braceexpand import braceexpand
275
+
276
+ if len(path) > 0: # not ""
277
+ path = list(braceexpand(path)) + other_paths
278
+ else:
279
+ path = other_paths
280
+ path = [path]
281
+ else:
282
+ path = [
283
+ None,
284
+ ]
285
+ torch.distributed.broadcast_object_list(path, src=0)
286
+ path = path[0]
287
+
288
+ tarfile_samples = partial(tarfile_samples_with_meta, meta_names=meta_names)
289
+ tarfile_to_samples = pipelinefilter(tarfile_samples)
290
+
291
+ # if model parallel, shuffle_buffer should be 1 to disable shuffling
292
+ try:
293
+ from sat.mpu import get_model_parallel_world_size
294
+
295
+ if get_model_parallel_world_size() > 1:
296
+ shuffle_buffer = 1
297
+ except Exception:
298
+ pass
299
+
300
+ super().__init__(
301
+ ConfiguredResampledShards(path, seed, nshards=nshards),
302
+ tarfile_to_samples(),
303
+ wds.shuffle(shuffle_buffer),
304
+ process_fn,
305
+ )
306
+
307
+
308
+ # rclone support
309
+ from webdataset.gopen import Pipe
310
+
311
+
312
+ def gopen_rclone(url, mode="rb", bufsize=1024 * 1024 * 32):
313
+ """Open a URL with `curl`.
314
+
315
+ :param url: rclone url, e.g. data:bucket1/foo.tar. data should be configured.
316
+ :param mode: file mode
317
+ :param bufsize: buffer size
318
+ """
319
+ url = url.replace("rclone://", "")
320
+ if mode[0] == "r":
321
+ cmd = f"rclone cat '{url}'"
322
+ return Pipe(
323
+ cmd,
324
+ mode=mode,
325
+ shell=True,
326
+ bufsize=bufsize,
327
+ ignore_status=[141, 23],
328
+ ) # skipcq: BAN-B604
329
+ elif mode[0] == "w":
330
+ cmd = f"rclone cp - '{url}'"
331
+ return Pipe(
332
+ cmd,
333
+ mode=mode,
334
+ shell=True,
335
+ bufsize=bufsize,
336
+ ignore_status=[141, 26],
337
+ ) # skipcq: BAN-B604
338
+ else:
339
+ raise ValueError(f"{mode}: unknown mode")
340
+
341
+
342
+ def gopen_boto3(url, mode="rb", bufsize=8192 * 2):
343
+ """Open a URL with boto3 API.
344
+
345
+ :param url: boto3 url, e.g. boto3://bucket1/foo.tar. data should be configured.
346
+ :param mode: file mode
347
+ :param bufsize: buffer size
348
+ """
349
+ import boto3
350
+
351
+ # boto3.set_stream_logger('botocore', level='DEBUG')
352
+ if url.startswith("boto3://"):
353
+ url = url.replace("boto3://", "")
354
+ need_meta = False
355
+ else:
356
+ url = url.replace("metaboto3://", "")
357
+ need_meta = True
358
+ endpoint_url = os.environ.get("S3_ENDPOINT_URL", None)
359
+ access_key = os.environ.get("S3_ACCESS_KEY_ID", None)
360
+ secret_key = os.environ.get("S3_SECRET_ACCESS_KEY", None)
361
+
362
+ if mode[0] == "r":
363
+ s3_client = boto3.client(
364
+ "s3", endpoint_url=endpoint_url, aws_access_key_id=access_key, aws_secret_access_key=secret_key
365
+ )
366
+ bucket, key = url.split("/", 1)
367
+
368
+ if need_meta:
369
+ # download a meta json
370
+ meta_file_key = key.split(".")[0] + ".meta.jsonl"
371
+ meta_stream = io.BytesIO()
372
+ s3_client.download_fileobj(bucket, meta_file_key, meta_stream)
373
+ meta_stream.seek(0)
374
+ meta_stream.name = meta_file_key
375
+ else:
376
+ meta_stream = None
377
+
378
+ # data tar stream
379
+ response = s3_client.get_object(Bucket=bucket, Key=key) # Range optional
380
+ response["Body"].name = key # actually not used
381
+ response["Body"].meta_stream = meta_stream
382
+ return response["Body"]
383
+ else:
384
+ raise ValueError(f"{mode}: unknown mode")
385
+
386
+
387
+ gopen_schemes["rclone"] = gopen_rclone
388
+ gopen_schemes["boto3"] = gopen_boto3
389
+ gopen_schemes["metaboto3"] = gopen_boto3
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright 2024 CogVideo Model Team @ Zhipu AI
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
MODEL_LICENSE ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ The CogVideoX License
2
+
3
+ 1. Definitions
4
+
5
+ “Licensor” means the CogVideoX Model Team that distributes its Software.
6
+
7
+ “Software” means the CogVideoX model parameters made available under this license.
8
+
9
+ 2. License Grant
10
+
11
+ Under the terms and conditions of this license, the licensor hereby grants you a non-exclusive, worldwide, non-transferable, non-sublicensable, revocable, royalty-free copyright license. The intellectual property rights of the generated content belong to the user to the extent permitted by applicable local laws.
12
+ This license allows you to freely use all open-source models in this repository for academic research. Users who wish to use the models for commercial purposes must register and obtain a basic commercial license in https://open.bigmodel.cn/mla/form .
13
+ Users who have registered and obtained the basic commercial license can use the models for commercial activities for free, but must comply with all terms and conditions of this license. Additionally, the number of service users (visits) for your commercial activities must not exceed 1 million visits per month.
14
+ If the number of service users (visits) for your commercial activities exceeds 1 million visits per month, you need to contact our business team to obtain more commercial licenses.
15
+ The above copyright statement and this license statement should be included in all copies or significant portions of this software.
16
+
17
+ 3. Restriction
18
+
19
+ You will not use, copy, modify, merge, publish, distribute, reproduce, or create derivative works of the Software, in whole or in part, for any military, or illegal purposes.
20
+
21
+ You will not use the Software for any act that may undermine China's national security and national unity, harm the public interest of society, or infringe upon the rights and interests of human beings.
22
+
23
+ 4. Disclaimer
24
+
25
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26
+
27
+ 5. Limitation of Liability
28
+
29
+ EXCEPT TO THE EXTENT PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL THEORY, WHETHER BASED IN TORT, NEGLIGENCE, CONTRACT, LIABILITY, OR OTHERWISE WILL ANY LICENSOR BE LIABLE TO YOU FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES, OR ANY OTHER COMMERCIAL LOSSES, EVEN IF THE LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
30
+
31
+ 6. Dispute Resolution
32
+
33
+ This license shall be governed and construed in accordance with the laws of People’s Republic of China. Any dispute arising from or in connection with this License shall be submitted to Haidian District People's Court in Beijing.
34
+
35
+ Note that the license is subject to update to a more comprehensive version. For any questions related to the license and copyright, please contact us at [email protected].
36
+
37
+ 1. 定义
38
+
39
+ “许可方”是指分发其软件的 CogVideoX 模型团队。
40
+
41
+ “软件”是指根据本许可提供的 CogVideoX 模型参数。
42
+
43
+ 2. 许可授予
44
+
45
+ 根据本许可的条款和条件,许可方特此授予您非排他性、全球性、不可转让、不可再许可、可撤销、免版税的版权许可。生成内容的知识产权所属,可根据适用当地法律的规定,在法律允许的范围内由用户享有生成内容的知识产权或其他权利。
46
+ 本许可允许您免费使用本仓库中的所有开源模型进行学术研究。对于希望将模型用于商业目的的用户,需在 https://open.bigmodel.cn/mla/form 完成登记并获得基础商用授权。
47
+
48
+ 经过登记并获得基础商用授权的用户可以免费使用本模型进行商业活动,但必须遵守本许可的所有条款和条件。
49
+ 在本许可证下,您的商业活动的服务用户数量(访问量)不得超过100万人次访问 / 每月。如果超过,您需要与我们的商业团队联系以获得更多的商业许可。
50
+ 上述版权声明和本许可声明应包含在本软件的所有副本或重要部分中。
51
+
52
+ 3.限制
53
+
54
+ 您不得出于任何军事或非法目的使用、复制、修改、合并、发布、分发、复制或创建本软件的全部或部分衍生作品。
55
+
56
+ 您不得利用本软件从事任何危害国家安全和国家统一、危害社会公共利益、侵犯人身权益的行为。
57
+
58
+ 4.免责声明
59
+
60
+ 本软件“按原样”提供,不提供任何明示或暗示的保证,包括但不限于对适销性、特定用途的适用性和非侵权性的保证。
61
+ 在任何情况下,作者或版权持有人均不对任何索赔、损害或其他责任负责,无论是在合同诉讼、侵权行为还是其他方面,由软件或软件的使用或其他交易引起、由软件引起或与之相关 软件。
62
+
63
+ 5. 责任限制
64
+
65
+ 除适用��律禁止的范围外,在任何情况下且根据任何法律理论,无论是基于侵权行为、疏忽、合同、责任或其他原因,任何许可方均不对您承担任何直接、间接、特殊、偶然、示范性、 或间接损害,或任何其他商业损失,即使许可人已被告知此类损害的可能性。
66
+
67
+ 6.争议解决
68
+
69
+ 本许可受中华人民共和国法律管辖并按其解释。 因本许可引起的或与本许可有关的任何争议应提交北京市海淀区人民法院。
70
+
71
+ 请注意,许可证可能会更新到更全面的版本。 有关许可和版权的任何问题,请通过 [email protected] 与我们联系。
README.md CHANGED
@@ -1,12 +1,105 @@
1
- ---
2
- title: Eawolf2357 Git
3
- emoji: 📊
4
- colorFrom: blue
5
- colorTo: yellow
6
- sdk: gradio
7
- sdk_version: 5.35.0
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # LongAnimation: Long Animation Generation with Dynamic Global-Local Memory
2
+ <a href="https://cn-makers.github.io/long_animation_web/"><img src="https://img.shields.io/static/v1?label=Project&message=Website&color=blue"></a>
3
+ <a href="https://arxiv.org/pdf/2507.01945"><img src="https://img.shields.io/badge/arXiv-2057.01945-b31b1b.svg"></a>
4
+ <a href="https://www.apache.org/licenses/LICENSE-2.0.txt"><img src="https://img.shields.io/badge/License-Apache-yellow"></a>
5
+
6
+
7
+ https://github.com/user-attachments/assets/a3866f82-b07a-41ae-9673-2a24f7c78af4
8
+
9
+
10
+
11
+ > <a href="https://cn-makers.github.io/long_animation_web/">**LongAnimation: Long Animation Generation with Dynamic Global-Local Memory**</a>
12
+ >
13
+
14
+ [Nan Chen](https://openreview.net/profile?id=~Nan_Chen13)<sup>1</sup>, [Mengqi Huang](https://corleone-huang.github.io/)<sup>1</sup>, [Yihao Meng](https://yihao-meng.github.io/)<sup>2</sup>, [Zhendong Mao](https://faculty.ustc.edu.cn/maozhendong/en/index.htm)<sup>†,1</sup><br>
15
+ <sup>1</sup>USTC <sup>2</sup>HKUST <sup>†</sup>corresponding author
16
+
17
+ > Existing studies are limited to short-term colorization by fusing overlapping features to achieve smooth transitions, which fails to maintain long-term color consistency. In this study, we propose a dynamic global-local paradigm to achieve ideal long-term color consistency by dynamically extracting global color-consistent features relevant to the current generation.
18
+ </p>
19
+
20
+ 🎉🎉 Our paper, “LongAnimation: Long Animation Generation with Dynamic Global-Local Memory” accepted by ICCV 2025!
21
+ **Strongly recommend seeing our [demo page](https://cn-makers.github.io/long_animation_web/).**
22
+
23
+
24
+ ## Showcase
25
+
26
+ https://github.com/user-attachments/assets/8d225a9e-6e27-42bd-9638-5f4e4cb4dbf7
27
+
28
+ https://github.com/user-attachments/assets/0fee3eed-8a38-4382-bbe6-21c0cf2371e9
29
+
30
+ https://github.com/user-attachments/assets/7d87e63a-f5e6-46ba-bb1b-d457ceb0b1d8
31
+
32
+
33
+ ## Creative usage
34
+ ### Text-guided Background Generation
35
+ https://github.com/user-attachments/assets/68a5d0fb-f767-4fc8-aed6-cd798301484f
36
+
37
+ https://github.com/user-attachments/assets/7cba4d5b-b793-474d-9da4-34892853b240
38
+
39
+ https://github.com/user-attachments/assets/6787349b-6a3e-4ed1-8a6a-efc1643a4e92
40
+ <div style="text-align:center; margin-top: -50px; margin-bottom: 70px;font-size: 18px; letter-spacing: 0.2px;">
41
+ <em>A boy and a girl in different environment.</em>
42
+ </div>
43
+ </div>
44
+
45
+ ## TODO List
46
+
47
+ - [x] Release the paper and demo page. Visit [https://cn-makers.github.io/long_animation_web/](https://cn-makers.github.io/long_animation_web/)
48
+ - [x] Release the code.
49
+
50
+
51
+ ## Requirements
52
+ The training is conducted on 6 A100 GPUs (80GB VRAM), the inference is tested on 1 A100 GPU.
53
+ ## Setup
54
+ ```
55
+ git clone https://github.com/CN-makers/LongAnimation
56
+ cd LongAnimation
57
+ ```
58
+
59
+ ## Environment
60
+ All the tests are conducted in Linux. We suggest running our code in Linux. To set up our environment in Linux, please run:
61
+ ```
62
+ conda create -n LongAnimation python=3.10 -y
63
+ conda activate LongAnimation
64
+
65
+ bash install.sh
66
+ ```
67
+
68
+
69
+ ## Checkpoints
70
+ 1. please download the pre-trained CogVideoX-1.5 I2V checkpoints from [here](https://huggingface.co/THUDM/CogVideoX1.5-5B-I2V), and put the whole folder under `pretrained_weight`, it should look like `./pretrained_weights/CogVideoX1.5-5B-I2V`
71
+
72
+ 2. please download the pre-trained long video understanding model Video-XL checkpoints from [here](https://huggingface.co/sy1998/Video_XL/tree/main), and put the whole folder under `pretrained_weight`, it should look like `./pretrained_weights/videoxl`
73
+
74
+ 3. please download the checkpoint for our SketchDiT and DGLM model from [here](https://huggingface.co/CNcreator0331/LongAnimation/tree/main), and put the whole folder as `./pretrained_weights/longanimation`.
75
+
76
+
77
+
78
+
79
+
80
+ ## Generate Your Animation!
81
+ To colorize the target lineart sequence with a specific character design, you can run the following command:
82
+ ```
83
+ bash long_animation_inference.sh
84
+ ```
85
+
86
+
87
+ We provide some test cases in `test_json` folder. You can also try our model with your own data. You can change the lineart sequence and corresponding character design in the script `Long_animation_inference.sh`.
88
+
89
+ During the official training and testing, the --height and --weight we used were 576 and 1024 respectively. Additionally, the model can also be compatible with resolutions of 768 in length and 1360 in width respectively.
90
+
91
+
92
+
93
+ ## Citation:
94
+ Don't forget to cite this source if it proves useful in your research!
95
+ ```
96
+ @misc{chen2025longanimationlonganimationgeneration,
97
+ title={LongAnimation: Long Animation Generation with Dynamic Global-Local Memory},
98
+ author={Nan Chen and Mengqi Huang and Yihao Meng and Zhendong Mao},
99
+ year={2025},
100
+ eprint={2507.01945},
101
+ archivePrefix={arXiv},
102
+ primaryClass={cs.CV},
103
+ url={https://arxiv.org/abs/2507.01945},
104
+ }
105
+ ```
accelerate_config_machine_single.yaml ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ compute_environment: LOCAL_MACHINE
2
+ debug: false
3
+ deepspeed_config:
4
+ gradient_accumulation_steps: 1
5
+ gradient_clipping: 1.0
6
+ offload_optimizer_device: none
7
+ offload_param_device: none
8
+ zero3_init_flag: false
9
+ zero_stage: 2
10
+ distributed_type: DEEPSPEED
11
+ downcast_bf16: 'no'
12
+ enable_cpu_affinity: false
13
+ machine_rank: 0
14
+ main_training_function: main
15
+ dynamo_backend: 'no'
16
+ mixed_precision: 'no'
17
+ num_machines: 1
18
+ num_processes: 4
19
+ rdzv_backend: static
20
+ same_network: true
21
+ tpu_env: []
22
+ tpu_use_cluster: false
23
+ tpu_use_sudo: false
24
+ use_cpu: false
diffusers/.github/ISSUE_TEMPLATE/bug-report.yml ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: "\U0001F41B Bug Report"
2
+ description: Report a bug on Diffusers
3
+ labels: [ "bug" ]
4
+ body:
5
+ - type: markdown
6
+ attributes:
7
+ value: |
8
+ Thanks a lot for taking the time to file this issue 🤗.
9
+ Issues do not only help to improve the library, but also publicly document common problems, questions, workflows for the whole community!
10
+ Thus, issues are of the same importance as pull requests when contributing to this library ❤️.
11
+ In order to make your issue as **useful for the community as possible**, let's try to stick to some simple guidelines:
12
+ - 1. Please try to be as precise and concise as possible.
13
+ *Give your issue a fitting title. Assume that someone which very limited knowledge of Diffusers can understand your issue. Add links to the source code, documentation other issues, pull requests etc...*
14
+ - 2. If your issue is about something not working, **always** provide a reproducible code snippet. The reader should be able to reproduce your issue by **only copy-pasting your code snippet into a Python shell**.
15
+ *The community cannot solve your issue if it cannot reproduce it. If your bug is related to training, add your training script and make everything needed to train public. Otherwise, just add a simple Python code snippet.*
16
+ - 3. Add the **minimum** amount of code / context that is needed to understand, reproduce your issue.
17
+ *Make the life of maintainers easy. `diffusers` is getting many issues every day. Make sure your issue is about one bug and one bug only. Make sure you add only the context, code needed to understand your issues - nothing more. Generally, every issue is a way of documenting this library, try to make it a good documentation entry.*
18
+ - 4. For issues related to community pipelines (i.e., the pipelines located in the `examples/community` folder), please tag the author of the pipeline in your issue thread as those pipelines are not maintained.
19
+ - type: markdown
20
+ attributes:
21
+ value: |
22
+ For more in-detail information on how to write good issues you can have a look [here](https://huggingface.co/course/chapter8/5?fw=pt).
23
+ - type: textarea
24
+ id: bug-description
25
+ attributes:
26
+ label: Describe the bug
27
+ description: A clear and concise description of what the bug is. If you intend to submit a pull request for this issue, tell us in the description. Thanks!
28
+ placeholder: Bug description
29
+ validations:
30
+ required: true
31
+ - type: textarea
32
+ id: reproduction
33
+ attributes:
34
+ label: Reproduction
35
+ description: Please provide a minimal reproducible code which we can copy/paste and reproduce the issue.
36
+ placeholder: Reproduction
37
+ validations:
38
+ required: true
39
+ - type: textarea
40
+ id: logs
41
+ attributes:
42
+ label: Logs
43
+ description: "Please include the Python logs if you can."
44
+ render: shell
45
+ - type: textarea
46
+ id: system-info
47
+ attributes:
48
+ label: System Info
49
+ description: Please share your system info with us. You can run the command `diffusers-cli env` and copy-paste its output below.
50
+ placeholder: Diffusers version, platform, Python version, ...
51
+ validations:
52
+ required: true
53
+ - type: textarea
54
+ id: who-can-help
55
+ attributes:
56
+ label: Who can help?
57
+ description: |
58
+ Your issue will be replied to more quickly if you can figure out the right person to tag with @.
59
+ If you know how to use git blame, that is the easiest way, otherwise, here is a rough guide of **who to tag**.
60
+
61
+ All issues are read by one of the core maintainers, so if you don't know who to tag, just leave this blank and
62
+ a core maintainer will ping the right person.
63
+
64
+ Please tag a maximum of 2 people.
65
+
66
+ Questions on DiffusionPipeline (Saving, Loading, From pretrained, ...): @sayakpaul @DN6
67
+
68
+ Questions on pipelines:
69
+ - Stable Diffusion @yiyixuxu @asomoza
70
+ - Stable Diffusion XL @yiyixuxu @sayakpaul @DN6
71
+ - Stable Diffusion 3: @yiyixuxu @sayakpaul @DN6 @asomoza
72
+ - Kandinsky @yiyixuxu
73
+ - ControlNet @sayakpaul @yiyixuxu @DN6
74
+ - T2I Adapter @sayakpaul @yiyixuxu @DN6
75
+ - IF @DN6
76
+ - Text-to-Video / Video-to-Video @DN6 @a-r-r-o-w
77
+ - Wuerstchen @DN6
78
+ - Other: @yiyixuxu @DN6
79
+ - Improving generation quality: @asomoza
80
+
81
+ Questions on models:
82
+ - UNet @DN6 @yiyixuxu @sayakpaul
83
+ - VAE @sayakpaul @DN6 @yiyixuxu
84
+ - Transformers/Attention @DN6 @yiyixuxu @sayakpaul
85
+
86
+ Questions on single file checkpoints: @DN6
87
+
88
+ Questions on Schedulers: @yiyixuxu
89
+
90
+ Questions on LoRA: @sayakpaul
91
+
92
+ Questions on Textual Inversion: @sayakpaul
93
+
94
+ Questions on Training:
95
+ - DreamBooth @sayakpaul
96
+ - Text-to-Image Fine-tuning @sayakpaul
97
+ - Textual Inversion @sayakpaul
98
+ - ControlNet @sayakpaul
99
+
100
+ Questions on Tests: @DN6 @sayakpaul @yiyixuxu
101
+
102
+ Questions on Documentation: @stevhliu
103
+
104
+ Questions on JAX- and MPS-related things: @pcuenca
105
+
106
+ Questions on audio pipelines: @sanchit-gandhi
107
+
108
+
109
+
110
+ placeholder: "@Username ..."
diffusers/.github/ISSUE_TEMPLATE/config.yml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ contact_links:
2
+ - name: Questions / Discussions
3
+ url: https://github.com/huggingface/diffusers/discussions
4
+ about: General usage questions and community discussions
diffusers/.github/ISSUE_TEMPLATE/feature_request.md ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ name: "\U0001F680 Feature Request"
3
+ about: Suggest an idea for this project
4
+ title: ''
5
+ labels: ''
6
+ assignees: ''
7
+
8
+ ---
9
+
10
+ **Is your feature request related to a problem? Please describe.**
11
+ A clear and concise description of what the problem is. Ex. I'm always frustrated when [...].
12
+
13
+ **Describe the solution you'd like.**
14
+ A clear and concise description of what you want to happen.
15
+
16
+ **Describe alternatives you've considered.**
17
+ A clear and concise description of any alternative solutions or features you've considered.
18
+
19
+ **Additional context.**
20
+ Add any other context or screenshots about the feature request here.
diffusers/.github/ISSUE_TEMPLATE/feedback.md ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ name: "💬 Feedback about API Design"
3
+ about: Give feedback about the current API design
4
+ title: ''
5
+ labels: ''
6
+ assignees: ''
7
+
8
+ ---
9
+
10
+ **What API design would you like to have changed or added to the library? Why?**
11
+
12
+ **What use case would this enable or better enable? Can you give us a code example?**
diffusers/.github/ISSUE_TEMPLATE/new-model-addition.yml ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: "\U0001F31F New Model/Pipeline/Scheduler Addition"
2
+ description: Submit a proposal/request to implement a new diffusion model/pipeline/scheduler
3
+ labels: [ "New model/pipeline/scheduler" ]
4
+
5
+ body:
6
+ - type: textarea
7
+ id: description-request
8
+ validations:
9
+ required: true
10
+ attributes:
11
+ label: Model/Pipeline/Scheduler description
12
+ description: |
13
+ Put any and all important information relative to the model/pipeline/scheduler
14
+
15
+ - type: checkboxes
16
+ id: information-tasks
17
+ attributes:
18
+ label: Open source status
19
+ description: |
20
+ Please note that if the model implementation isn't available or if the weights aren't open-source, we are less likely to implement it in `diffusers`.
21
+ options:
22
+ - label: "The model implementation is available."
23
+ - label: "The model weights are available (Only relevant if addition is not a scheduler)."
24
+
25
+ - type: textarea
26
+ id: additional-info
27
+ attributes:
28
+ label: Provide useful links for the implementation
29
+ description: |
30
+ Please provide information regarding the implementation, the weights, and the authors.
31
+ Please mention the authors by @gh-username if you're aware of their usernames.
diffusers/.github/ISSUE_TEMPLATE/translate.md ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ name: 🌐 Translating a New Language?
3
+ about: Start a new translation effort in your language
4
+ title: '[<languageCode>] Translating docs to <languageName>'
5
+ labels: WIP
6
+ assignees: ''
7
+
8
+ ---
9
+
10
+ <!--
11
+ Note: Please search to see if an issue already exists for the language you are trying to translate.
12
+ -->
13
+
14
+ Hi!
15
+
16
+ Let's bring the documentation to all the <languageName>-speaking community 🌐.
17
+
18
+ Who would want to translate? Please follow the 🤗 [TRANSLATING guide](https://github.com/huggingface/diffusers/blob/main/docs/TRANSLATING.md). Here is a list of the files ready for translation. Let us know in this issue if you'd like to translate any, and we'll add your name to the list.
19
+
20
+ Some notes:
21
+
22
+ * Please translate using an informal tone (imagine you are talking with a friend about Diffusers 🤗).
23
+ * Please translate in a gender-neutral way.
24
+ * Add your translations to the folder called `<languageCode>` inside the [source folder](https://github.com/huggingface/diffusers/tree/main/docs/source).
25
+ * Register your translation in `<languageCode>/_toctree.yml`; please follow the order of the [English version](https://github.com/huggingface/diffusers/blob/main/docs/source/en/_toctree.yml).
26
+ * Once you're finished, open a pull request and tag this issue by including #issue-number in the description, where issue-number is the number of this issue. Please ping @stevhliu for review.
27
+ * 🙋 If you'd like others to help you with the translation, you can also post in the 🤗 [forums](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63).
28
+
29
+ Thank you so much for your help! 🤗
diffusers/.github/PULL_REQUEST_TEMPLATE.md ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # What does this PR do?
2
+
3
+ <!--
4
+ Congratulations! You've made it this far! You're not quite done yet though.
5
+
6
+ Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution.
7
+
8
+ Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change.
9
+
10
+ Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost.
11
+ -->
12
+
13
+ <!-- Remove if not applicable -->
14
+
15
+ Fixes # (issue)
16
+
17
+
18
+ ## Before submitting
19
+ - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
20
+ - [ ] Did you read the [contributor guideline](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md)?
21
+ - [ ] Did you read our [philosophy doc](https://github.com/huggingface/diffusers/blob/main/PHILOSOPHY.md) (important for complex PRs)?
22
+ - [ ] Was this discussed/approved via a GitHub issue or the [forum](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63)? Please add a link to it if that's the case.
23
+ - [ ] Did you make sure to update the documentation with your changes? Here are the
24
+ [documentation guidelines](https://github.com/huggingface/diffusers/tree/main/docs), and
25
+ [here are tips on formatting docstrings](https://github.com/huggingface/diffusers/tree/main/docs#writing-source-documentation).
26
+ - [ ] Did you write any new necessary tests?
27
+
28
+
29
+ ## Who can review?
30
+
31
+ Anyone in the community is free to review the PR once the tests have passed. Feel free to tag
32
+ members/contributors who may be interested in your PR.
33
+
34
+ <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @.
35
+
36
+ If you know how to use git blame, that is the easiest way, otherwise, here is a rough guide of **who to tag**.
37
+ Please tag fewer than 3 people.
38
+
39
+ Core library:
40
+
41
+ - Schedulers: @yiyixuxu
42
+ - Pipelines and pipeline callbacks: @yiyixuxu and @asomoza
43
+ - Training examples: @sayakpaul
44
+ - Docs: @stevhliu and @sayakpaul
45
+ - JAX and MPS: @pcuenca
46
+ - Audio: @sanchit-gandhi
47
+ - General functionalities: @sayakpaul @yiyixuxu @DN6
48
+
49
+ Integrations:
50
+
51
+ - deepspeed: HF Trainer/Accelerate: @SunMarc
52
+ - PEFT: @sayakpaul @BenjaminBossan
53
+
54
+ HF projects:
55
+
56
+ - accelerate: [different repo](https://github.com/huggingface/accelerate)
57
+ - datasets: [different repo](https://github.com/huggingface/datasets)
58
+ - transformers: [different repo](https://github.com/huggingface/transformers)
59
+ - safetensors: [different repo](https://github.com/huggingface/safetensors)
60
+
61
+ -->
diffusers/.github/actions/setup-miniconda/action.yml ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Set up conda environment for testing
2
+
3
+ description: Sets up miniconda in your ${RUNNER_TEMP} environment and gives you the ${CONDA_RUN} environment variable so you don't have to worry about polluting non-empeheral runners anymore
4
+
5
+ inputs:
6
+ python-version:
7
+ description: If set to any value, don't use sudo to clean the workspace
8
+ required: false
9
+ type: string
10
+ default: "3.9"
11
+ miniconda-version:
12
+ description: Miniconda version to install
13
+ required: false
14
+ type: string
15
+ default: "4.12.0"
16
+ environment-file:
17
+ description: Environment file to install dependencies from
18
+ required: false
19
+ type: string
20
+ default: ""
21
+
22
+ runs:
23
+ using: composite
24
+ steps:
25
+ # Use the same trick from https://github.com/marketplace/actions/setup-miniconda
26
+ # to refresh the cache daily. This is kind of optional though
27
+ - name: Get date
28
+ id: get-date
29
+ shell: bash
30
+ run: echo "today=$(/bin/date -u '+%Y%m%d')d" >> $GITHUB_OUTPUT
31
+ - name: Setup miniconda cache
32
+ id: miniconda-cache
33
+ uses: actions/cache@v2
34
+ with:
35
+ path: ${{ runner.temp }}/miniconda
36
+ key: miniconda-${{ runner.os }}-${{ runner.arch }}-${{ inputs.python-version }}-${{ steps.get-date.outputs.today }}
37
+ - name: Install miniconda (${{ inputs.miniconda-version }})
38
+ if: steps.miniconda-cache.outputs.cache-hit != 'true'
39
+ env:
40
+ MINICONDA_VERSION: ${{ inputs.miniconda-version }}
41
+ shell: bash -l {0}
42
+ run: |
43
+ MINICONDA_INSTALL_PATH="${RUNNER_TEMP}/miniconda"
44
+ mkdir -p "${MINICONDA_INSTALL_PATH}"
45
+ case ${RUNNER_OS}-${RUNNER_ARCH} in
46
+ Linux-X64)
47
+ MINICONDA_ARCH="Linux-x86_64"
48
+ ;;
49
+ macOS-ARM64)
50
+ MINICONDA_ARCH="MacOSX-arm64"
51
+ ;;
52
+ macOS-X64)
53
+ MINICONDA_ARCH="MacOSX-x86_64"
54
+ ;;
55
+ *)
56
+ echo "::error::Platform ${RUNNER_OS}-${RUNNER_ARCH} currently unsupported using this action"
57
+ exit 1
58
+ ;;
59
+ esac
60
+ MINICONDA_URL="https://repo.anaconda.com/miniconda/Miniconda3-py39_${MINICONDA_VERSION}-${MINICONDA_ARCH}.sh"
61
+ curl -fsSL "${MINICONDA_URL}" -o "${MINICONDA_INSTALL_PATH}/miniconda.sh"
62
+ bash "${MINICONDA_INSTALL_PATH}/miniconda.sh" -b -u -p "${MINICONDA_INSTALL_PATH}"
63
+ rm -rf "${MINICONDA_INSTALL_PATH}/miniconda.sh"
64
+ - name: Update GitHub path to include miniconda install
65
+ shell: bash
66
+ run: |
67
+ MINICONDA_INSTALL_PATH="${RUNNER_TEMP}/miniconda"
68
+ echo "${MINICONDA_INSTALL_PATH}/bin" >> $GITHUB_PATH
69
+ - name: Setup miniconda env cache (with env file)
70
+ id: miniconda-env-cache-env-file
71
+ if: ${{ runner.os }} == 'macOS' && ${{ inputs.environment-file }} != ''
72
+ uses: actions/cache@v2
73
+ with:
74
+ path: ${{ runner.temp }}/conda-python-${{ inputs.python-version }}
75
+ key: miniconda-env-${{ runner.os }}-${{ runner.arch }}-${{ inputs.python-version }}-${{ steps.get-date.outputs.today }}-${{ hashFiles(inputs.environment-file) }}
76
+ - name: Setup miniconda env cache (without env file)
77
+ id: miniconda-env-cache
78
+ if: ${{ runner.os }} == 'macOS' && ${{ inputs.environment-file }} == ''
79
+ uses: actions/cache@v2
80
+ with:
81
+ path: ${{ runner.temp }}/conda-python-${{ inputs.python-version }}
82
+ key: miniconda-env-${{ runner.os }}-${{ runner.arch }}-${{ inputs.python-version }}-${{ steps.get-date.outputs.today }}
83
+ - name: Setup conda environment with python (v${{ inputs.python-version }})
84
+ if: steps.miniconda-env-cache-env-file.outputs.cache-hit != 'true' && steps.miniconda-env-cache.outputs.cache-hit != 'true'
85
+ shell: bash
86
+ env:
87
+ PYTHON_VERSION: ${{ inputs.python-version }}
88
+ ENV_FILE: ${{ inputs.environment-file }}
89
+ run: |
90
+ CONDA_BASE_ENV="${RUNNER_TEMP}/conda-python-${PYTHON_VERSION}"
91
+ ENV_FILE_FLAG=""
92
+ if [[ -f "${ENV_FILE}" ]]; then
93
+ ENV_FILE_FLAG="--file ${ENV_FILE}"
94
+ elif [[ -n "${ENV_FILE}" ]]; then
95
+ echo "::warning::Specified env file (${ENV_FILE}) not found, not going to include it"
96
+ fi
97
+ conda create \
98
+ --yes \
99
+ --prefix "${CONDA_BASE_ENV}" \
100
+ "python=${PYTHON_VERSION}" \
101
+ ${ENV_FILE_FLAG} \
102
+ cmake=3.22 \
103
+ conda-build=3.21 \
104
+ ninja=1.10 \
105
+ pkg-config=0.29 \
106
+ wheel=0.37
107
+ - name: Clone the base conda environment and update GitHub env
108
+ shell: bash
109
+ env:
110
+ PYTHON_VERSION: ${{ inputs.python-version }}
111
+ CONDA_BASE_ENV: ${{ runner.temp }}/conda-python-${{ inputs.python-version }}
112
+ run: |
113
+ CONDA_ENV="${RUNNER_TEMP}/conda_environment_${GITHUB_RUN_ID}"
114
+ conda create \
115
+ --yes \
116
+ --prefix "${CONDA_ENV}" \
117
+ --clone "${CONDA_BASE_ENV}"
118
+ # TODO: conda-build could not be cloned because it hardcodes the path, so it
119
+ # could not be cached
120
+ conda install --yes -p ${CONDA_ENV} conda-build=3.21
121
+ echo "CONDA_ENV=${CONDA_ENV}" >> "${GITHUB_ENV}"
122
+ echo "CONDA_RUN=conda run -p ${CONDA_ENV} --no-capture-output" >> "${GITHUB_ENV}"
123
+ echo "CONDA_BUILD=conda run -p ${CONDA_ENV} conda-build" >> "${GITHUB_ENV}"
124
+ echo "CONDA_INSTALL=conda install -p ${CONDA_ENV}" >> "${GITHUB_ENV}"
125
+ - name: Get disk space usage and throw an error for low disk space
126
+ shell: bash
127
+ run: |
128
+ echo "Print the available disk space for manual inspection"
129
+ df -h
130
+ # Set the minimum requirement space to 4GB
131
+ MINIMUM_AVAILABLE_SPACE_IN_GB=4
132
+ MINIMUM_AVAILABLE_SPACE_IN_KB=$(($MINIMUM_AVAILABLE_SPACE_IN_GB * 1024 * 1024))
133
+ # Use KB to avoid floating point warning like 3.1GB
134
+ df -k | tr -s ' ' | cut -d' ' -f 4,9 | while read -r LINE;
135
+ do
136
+ AVAIL=$(echo $LINE | cut -f1 -d' ')
137
+ MOUNT=$(echo $LINE | cut -f2 -d' ')
138
+ if [ "$MOUNT" = "/" ]; then
139
+ if [ "$AVAIL" -lt "$MINIMUM_AVAILABLE_SPACE_IN_KB" ]; then
140
+ echo "There is only ${AVAIL}KB free space left in $MOUNT, which is less than the minimum requirement of ${MINIMUM_AVAILABLE_SPACE_IN_KB}KB. Please help create an issue to PyTorch Release Engineering via https://github.com/pytorch/test-infra/issues and provide the link to the workflow run."
141
+ exit 1;
142
+ else
143
+ echo "There is ${AVAIL}KB free space left in $MOUNT, continue"
144
+ fi
145
+ fi
146
+ done
diffusers/.github/workflows/benchmark.yml ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Benchmarking tests
2
+
3
+ on:
4
+ workflow_dispatch:
5
+ schedule:
6
+ - cron: "30 1 1,15 * *" # every 2 weeks on the 1st and the 15th of every month at 1:30 AM
7
+
8
+ env:
9
+ DIFFUSERS_IS_CI: yes
10
+ HF_HUB_ENABLE_HF_TRANSFER: 1
11
+ HF_HOME: /mnt/cache
12
+ OMP_NUM_THREADS: 8
13
+ MKL_NUM_THREADS: 8
14
+
15
+ jobs:
16
+ torch_pipelines_cuda_benchmark_tests:
17
+ env:
18
+ SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL_BENCHMARK }}
19
+ name: Torch Core Pipelines CUDA Benchmarking Tests
20
+ strategy:
21
+ fail-fast: false
22
+ max-parallel: 1
23
+ runs-on:
24
+ group: aws-g6-4xlarge-plus
25
+ container:
26
+ image: diffusers/diffusers-pytorch-compile-cuda
27
+ options: --shm-size "16gb" --ipc host --gpus 0
28
+ steps:
29
+ - name: Checkout diffusers
30
+ uses: actions/checkout@v3
31
+ with:
32
+ fetch-depth: 2
33
+ - name: NVIDIA-SMI
34
+ run: |
35
+ nvidia-smi
36
+ - name: Install dependencies
37
+ run: |
38
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
39
+ python -m uv pip install -e [quality,test]
40
+ python -m uv pip install pandas peft
41
+ - name: Environment
42
+ run: |
43
+ python utils/print_env.py
44
+ - name: Diffusers Benchmarking
45
+ env:
46
+ HF_TOKEN: ${{ secrets.DIFFUSERS_BOT_TOKEN }}
47
+ BASE_PATH: benchmark_outputs
48
+ run: |
49
+ export TOTAL_GPU_MEMORY=$(python -c "import torch; print(torch.cuda.get_device_properties(0).total_memory / (1024**3))")
50
+ cd benchmarks && mkdir ${BASE_PATH} && python run_all.py && python push_results.py
51
+
52
+ - name: Test suite reports artifacts
53
+ if: ${{ always() }}
54
+ uses: actions/upload-artifact@v4
55
+ with:
56
+ name: benchmark_test_reports
57
+ path: benchmarks/benchmark_outputs
58
+
59
+ - name: Report success status
60
+ if: ${{ success() }}
61
+ run: |
62
+ pip install requests && python utils/notify_benchmarking_status.py --status=success
63
+
64
+ - name: Report failure status
65
+ if: ${{ failure() }}
66
+ run: |
67
+ pip install requests && python utils/notify_benchmarking_status.py --status=failure
diffusers/.github/workflows/build_docker_images.yml ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Test, build, and push Docker images
2
+
3
+ on:
4
+ pull_request: # During PRs, we just check if the changes Dockerfiles can be successfully built
5
+ branches:
6
+ - main
7
+ paths:
8
+ - "docker/**"
9
+ workflow_dispatch:
10
+ schedule:
11
+ - cron: "0 0 * * *" # every day at midnight
12
+
13
+ concurrency:
14
+ group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
15
+ cancel-in-progress: true
16
+
17
+ env:
18
+ REGISTRY: diffusers
19
+ CI_SLACK_CHANNEL: ${{ secrets.CI_DOCKER_CHANNEL }}
20
+
21
+ jobs:
22
+ test-build-docker-images:
23
+ runs-on:
24
+ group: aws-general-8-plus
25
+ if: github.event_name == 'pull_request'
26
+ steps:
27
+ - name: Set up Docker Buildx
28
+ uses: docker/setup-buildx-action@v1
29
+
30
+ - name: Check out code
31
+ uses: actions/checkout@v3
32
+
33
+ - name: Find Changed Dockerfiles
34
+ id: file_changes
35
+ uses: jitterbit/get-changed-files@v1
36
+ with:
37
+ format: 'space-delimited'
38
+ token: ${{ secrets.GITHUB_TOKEN }}
39
+
40
+ - name: Build Changed Docker Images
41
+ run: |
42
+ CHANGED_FILES="${{ steps.file_changes.outputs.all }}"
43
+ for FILE in $CHANGED_FILES; do
44
+ if [[ "$FILE" == docker/*Dockerfile ]]; then
45
+ DOCKER_PATH="${FILE%/Dockerfile}"
46
+ DOCKER_TAG=$(basename "$DOCKER_PATH")
47
+ echo "Building Docker image for $DOCKER_TAG"
48
+ docker build -t "$DOCKER_TAG" "$DOCKER_PATH"
49
+ fi
50
+ done
51
+ if: steps.file_changes.outputs.all != ''
52
+
53
+ build-and-push-docker-images:
54
+ runs-on:
55
+ group: aws-general-8-plus
56
+ if: github.event_name != 'pull_request'
57
+
58
+ permissions:
59
+ contents: read
60
+ packages: write
61
+
62
+ strategy:
63
+ fail-fast: false
64
+ matrix:
65
+ image-name:
66
+ - diffusers-pytorch-cpu
67
+ - diffusers-pytorch-cuda
68
+ - diffusers-pytorch-compile-cuda
69
+ - diffusers-pytorch-xformers-cuda
70
+ - diffusers-flax-cpu
71
+ - diffusers-flax-tpu
72
+ - diffusers-onnxruntime-cpu
73
+ - diffusers-onnxruntime-cuda
74
+ - diffusers-doc-builder
75
+
76
+ steps:
77
+ - name: Checkout repository
78
+ uses: actions/checkout@v3
79
+ - name: Set up Docker Buildx
80
+ uses: docker/setup-buildx-action@v1
81
+ - name: Login to Docker Hub
82
+ uses: docker/login-action@v2
83
+ with:
84
+ username: ${{ env.REGISTRY }}
85
+ password: ${{ secrets.DOCKERHUB_TOKEN }}
86
+ - name: Build and push
87
+ uses: docker/build-push-action@v3
88
+ with:
89
+ no-cache: true
90
+ context: ./docker/${{ matrix.image-name }}
91
+ push: true
92
+ tags: ${{ env.REGISTRY }}/${{ matrix.image-name }}:latest
93
+
94
+ - name: Post to a Slack channel
95
+ id: slack
96
+ uses: huggingface/hf-workflows/.github/actions/post-slack@main
97
+ with:
98
+ # Slack channel id, channel name, or user id to post message.
99
+ # See also: https://api.slack.com/methods/chat.postMessage#channels
100
+ slack_channel: ${{ env.CI_SLACK_CHANNEL }}
101
+ title: "🤗 Results of the ${{ matrix.image-name }} Docker Image build"
102
+ status: ${{ job.status }}
103
+ slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
diffusers/.github/workflows/build_documentation.yml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Build documentation
2
+
3
+ on:
4
+ push:
5
+ branches:
6
+ - main
7
+ - doc-builder*
8
+ - v*-release
9
+ - v*-patch
10
+ paths:
11
+ - "src/diffusers/**.py"
12
+ - "examples/**"
13
+ - "docs/**"
14
+
15
+ jobs:
16
+ build:
17
+ uses: huggingface/doc-builder/.github/workflows/build_main_documentation.yml@main
18
+ with:
19
+ commit_sha: ${{ github.sha }}
20
+ install_libgl1: true
21
+ package: diffusers
22
+ notebook_folder: diffusers_doc
23
+ languages: en ko zh ja pt
24
+ custom_container: diffusers/diffusers-doc-builder
25
+ secrets:
26
+ token: ${{ secrets.HUGGINGFACE_PUSH }}
27
+ hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}
diffusers/.github/workflows/build_pr_documentation.yml ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Build PR Documentation
2
+
3
+ on:
4
+ pull_request:
5
+ paths:
6
+ - "src/diffusers/**.py"
7
+ - "examples/**"
8
+ - "docs/**"
9
+
10
+ concurrency:
11
+ group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
12
+ cancel-in-progress: true
13
+
14
+ jobs:
15
+ build:
16
+ uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@main
17
+ with:
18
+ commit_sha: ${{ github.event.pull_request.head.sha }}
19
+ pr_number: ${{ github.event.number }}
20
+ install_libgl1: true
21
+ package: diffusers
22
+ languages: en ko zh ja pt
23
+ custom_container: diffusers/diffusers-doc-builder
diffusers/.github/workflows/mirror_community_pipeline.yml ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Mirror Community Pipeline
2
+
3
+ on:
4
+ # Push changes on the main branch
5
+ push:
6
+ branches:
7
+ - main
8
+ paths:
9
+ - 'examples/community/**.py'
10
+
11
+ # And on tag creation (e.g. `v0.28.1`)
12
+ tags:
13
+ - '*'
14
+
15
+ # Manual trigger with ref input
16
+ workflow_dispatch:
17
+ inputs:
18
+ ref:
19
+ description: "Either 'main' or a tag ref"
20
+ required: true
21
+ default: 'main'
22
+
23
+ jobs:
24
+ mirror_community_pipeline:
25
+ env:
26
+ SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL_COMMUNITY_MIRROR }}
27
+
28
+ runs-on: ubuntu-22.04
29
+ steps:
30
+ # Checkout to correct ref
31
+ # If workflow dispatch
32
+ # If ref is 'main', set:
33
+ # CHECKOUT_REF=refs/heads/main
34
+ # PATH_IN_REPO=main
35
+ # Else it must be a tag. Set:
36
+ # CHECKOUT_REF=refs/tags/{tag}
37
+ # PATH_IN_REPO={tag}
38
+ # If not workflow dispatch
39
+ # If ref is 'refs/heads/main' => set 'main'
40
+ # Else it must be a tag => set {tag}
41
+ - name: Set checkout_ref and path_in_repo
42
+ run: |
43
+ if [ "${{ github.event_name }}" == "workflow_dispatch" ]; then
44
+ if [ -z "${{ github.event.inputs.ref }}" ]; then
45
+ echo "Error: Missing ref input"
46
+ exit 1
47
+ elif [ "${{ github.event.inputs.ref }}" == "main" ]; then
48
+ echo "CHECKOUT_REF=refs/heads/main" >> $GITHUB_ENV
49
+ echo "PATH_IN_REPO=main" >> $GITHUB_ENV
50
+ else
51
+ echo "CHECKOUT_REF=refs/tags/${{ github.event.inputs.ref }}" >> $GITHUB_ENV
52
+ echo "PATH_IN_REPO=${{ github.event.inputs.ref }}" >> $GITHUB_ENV
53
+ fi
54
+ elif [ "${{ github.ref }}" == "refs/heads/main" ]; then
55
+ echo "CHECKOUT_REF=${{ github.ref }}" >> $GITHUB_ENV
56
+ echo "PATH_IN_REPO=main" >> $GITHUB_ENV
57
+ else
58
+ # e.g. refs/tags/v0.28.1 -> v0.28.1
59
+ echo "CHECKOUT_REF=${{ github.ref }}" >> $GITHUB_ENV
60
+ echo "PATH_IN_REPO=$(echo ${{ github.ref }} | sed 's/^refs\/tags\///')" >> $GITHUB_ENV
61
+ fi
62
+ - name: Print env vars
63
+ run: |
64
+ echo "CHECKOUT_REF: ${{ env.CHECKOUT_REF }}"
65
+ echo "PATH_IN_REPO: ${{ env.PATH_IN_REPO }}"
66
+ - uses: actions/checkout@v3
67
+ with:
68
+ ref: ${{ env.CHECKOUT_REF }}
69
+
70
+ # Setup + install dependencies
71
+ - name: Set up Python
72
+ uses: actions/setup-python@v4
73
+ with:
74
+ python-version: "3.10"
75
+ - name: Install dependencies
76
+ run: |
77
+ python -m pip install --upgrade pip
78
+ pip install --upgrade huggingface_hub
79
+
80
+ # Check secret is set
81
+ - name: whoami
82
+ run: huggingface-cli whoami
83
+ env:
84
+ HF_TOKEN: ${{ secrets.HF_TOKEN_MIRROR_COMMUNITY_PIPELINES }}
85
+
86
+ # Push to HF! (under subfolder based on checkout ref)
87
+ # https://huggingface.co/datasets/diffusers/community-pipelines-mirror
88
+ - name: Mirror community pipeline to HF
89
+ run: huggingface-cli upload diffusers/community-pipelines-mirror ./examples/community ${PATH_IN_REPO} --repo-type dataset
90
+ env:
91
+ PATH_IN_REPO: ${{ env.PATH_IN_REPO }}
92
+ HF_TOKEN: ${{ secrets.HF_TOKEN_MIRROR_COMMUNITY_PIPELINES }}
93
+
94
+ - name: Report success status
95
+ if: ${{ success() }}
96
+ run: |
97
+ pip install requests && python utils/notify_community_pipelines_mirror.py --status=success
98
+
99
+ - name: Report failure status
100
+ if: ${{ failure() }}
101
+ run: |
102
+ pip install requests && python utils/notify_community_pipelines_mirror.py --status=failure
diffusers/.github/workflows/nightly_tests.yml ADDED
@@ -0,0 +1,408 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Nightly and release tests on main/release branch
2
+
3
+ on:
4
+ workflow_dispatch:
5
+ schedule:
6
+ - cron: "0 0 * * *" # every day at midnight
7
+
8
+ env:
9
+ DIFFUSERS_IS_CI: yes
10
+ HF_HUB_ENABLE_HF_TRANSFER: 1
11
+ OMP_NUM_THREADS: 8
12
+ MKL_NUM_THREADS: 8
13
+ PYTEST_TIMEOUT: 600
14
+ RUN_SLOW: yes
15
+ RUN_NIGHTLY: yes
16
+ PIPELINE_USAGE_CUTOFF: 5000
17
+ SLACK_API_TOKEN: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
18
+
19
+ jobs:
20
+ setup_torch_cuda_pipeline_matrix:
21
+ name: Setup Torch Pipelines CUDA Slow Tests Matrix
22
+ runs-on:
23
+ group: aws-general-8-plus
24
+ container:
25
+ image: diffusers/diffusers-pytorch-cpu
26
+ outputs:
27
+ pipeline_test_matrix: ${{ steps.fetch_pipeline_matrix.outputs.pipeline_test_matrix }}
28
+ steps:
29
+ - name: Checkout diffusers
30
+ uses: actions/checkout@v3
31
+ with:
32
+ fetch-depth: 2
33
+ - name: Install dependencies
34
+ run: |
35
+ pip install -e .[test]
36
+ pip install huggingface_hub
37
+ - name: Fetch Pipeline Matrix
38
+ id: fetch_pipeline_matrix
39
+ run: |
40
+ matrix=$(python utils/fetch_torch_cuda_pipeline_test_matrix.py)
41
+ echo $matrix
42
+ echo "pipeline_test_matrix=$matrix" >> $GITHUB_OUTPUT
43
+
44
+ - name: Pipeline Tests Artifacts
45
+ if: ${{ always() }}
46
+ uses: actions/upload-artifact@v4
47
+ with:
48
+ name: test-pipelines.json
49
+ path: reports
50
+
51
+ run_nightly_tests_for_torch_pipelines:
52
+ name: Nightly Torch Pipelines CUDA Tests
53
+ needs: setup_torch_cuda_pipeline_matrix
54
+ strategy:
55
+ fail-fast: false
56
+ max-parallel: 8
57
+ matrix:
58
+ module: ${{ fromJson(needs.setup_torch_cuda_pipeline_matrix.outputs.pipeline_test_matrix) }}
59
+ runs-on:
60
+ group: aws-g4dn-2xlarge
61
+ container:
62
+ image: diffusers/diffusers-pytorch-cuda
63
+ options: --shm-size "16gb" --ipc host --gpus 0
64
+ steps:
65
+ - name: Checkout diffusers
66
+ uses: actions/checkout@v3
67
+ with:
68
+ fetch-depth: 2
69
+ - name: NVIDIA-SMI
70
+ run: nvidia-smi
71
+ - name: Install dependencies
72
+ run: |
73
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
74
+ python -m uv pip install -e [quality,test]
75
+ pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
76
+ python -m uv pip install pytest-reportlog
77
+ - name: Environment
78
+ run: |
79
+ python utils/print_env.py
80
+ - name: Pipeline CUDA Test
81
+ env:
82
+ HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
83
+ # https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
84
+ CUBLAS_WORKSPACE_CONFIG: :16:8
85
+ run: |
86
+ python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
87
+ -s -v -k "not Flax and not Onnx" \
88
+ --make-reports=tests_pipeline_${{ matrix.module }}_cuda \
89
+ --report-log=tests_pipeline_${{ matrix.module }}_cuda.log \
90
+ tests/pipelines/${{ matrix.module }}
91
+ - name: Failure short reports
92
+ if: ${{ failure() }}
93
+ run: |
94
+ cat reports/tests_pipeline_${{ matrix.module }}_cuda_stats.txt
95
+ cat reports/tests_pipeline_${{ matrix.module }}_cuda_failures_short.txt
96
+ - name: Test suite reports artifacts
97
+ if: ${{ always() }}
98
+ uses: actions/upload-artifact@v4
99
+ with:
100
+ name: pipeline_${{ matrix.module }}_test_reports
101
+ path: reports
102
+ - name: Generate Report and Notify Channel
103
+ if: always()
104
+ run: |
105
+ pip install slack_sdk tabulate
106
+ python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
107
+
108
+ run_nightly_tests_for_other_torch_modules:
109
+ name: Nightly Torch CUDA Tests
110
+ runs-on:
111
+ group: aws-g4dn-2xlarge
112
+ container:
113
+ image: diffusers/diffusers-pytorch-cuda
114
+ options: --shm-size "16gb" --ipc host --gpus 0
115
+ defaults:
116
+ run:
117
+ shell: bash
118
+ strategy:
119
+ fail-fast: false
120
+ max-parallel: 2
121
+ matrix:
122
+ module: [models, schedulers, lora, others, single_file, examples]
123
+ steps:
124
+ - name: Checkout diffusers
125
+ uses: actions/checkout@v3
126
+ with:
127
+ fetch-depth: 2
128
+
129
+ - name: Install dependencies
130
+ run: |
131
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
132
+ python -m uv pip install -e [quality,test]
133
+ python -m uv pip install peft@git+https://github.com/huggingface/peft.git
134
+ pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
135
+ python -m uv pip install pytest-reportlog
136
+ - name: Environment
137
+ run: python utils/print_env.py
138
+
139
+ - name: Run nightly PyTorch CUDA tests for non-pipeline modules
140
+ if: ${{ matrix.module != 'examples'}}
141
+ env:
142
+ HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
143
+ # https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
144
+ CUBLAS_WORKSPACE_CONFIG: :16:8
145
+ run: |
146
+ python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
147
+ -s -v -k "not Flax and not Onnx" \
148
+ --make-reports=tests_torch_${{ matrix.module }}_cuda \
149
+ --report-log=tests_torch_${{ matrix.module }}_cuda.log \
150
+ tests/${{ matrix.module }}
151
+
152
+ - name: Run nightly example tests with Torch
153
+ if: ${{ matrix.module == 'examples' }}
154
+ env:
155
+ HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
156
+ # https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
157
+ CUBLAS_WORKSPACE_CONFIG: :16:8
158
+ run: |
159
+ python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
160
+ -s -v --make-reports=examples_torch_cuda \
161
+ --report-log=examples_torch_cuda.log \
162
+ examples/
163
+
164
+ - name: Failure short reports
165
+ if: ${{ failure() }}
166
+ run: |
167
+ cat reports/tests_torch_${{ matrix.module }}_cuda_stats.txt
168
+ cat reports/tests_torch_${{ matrix.module }}_cuda_failures_short.txt
169
+
170
+ - name: Test suite reports artifacts
171
+ if: ${{ always() }}
172
+ uses: actions/upload-artifact@v4
173
+ with:
174
+ name: torch_${{ matrix.module }}_cuda_test_reports
175
+ path: reports
176
+
177
+ - name: Generate Report and Notify Channel
178
+ if: always()
179
+ run: |
180
+ pip install slack_sdk tabulate
181
+ python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
182
+
183
+ run_flax_tpu_tests:
184
+ name: Nightly Flax TPU Tests
185
+ runs-on: docker-tpu
186
+ if: github.event_name == 'schedule'
187
+
188
+ container:
189
+ image: diffusers/diffusers-flax-tpu
190
+ options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/ --privileged
191
+ defaults:
192
+ run:
193
+ shell: bash
194
+ steps:
195
+ - name: Checkout diffusers
196
+ uses: actions/checkout@v3
197
+ with:
198
+ fetch-depth: 2
199
+
200
+ - name: Install dependencies
201
+ run: |
202
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
203
+ python -m uv pip install -e [quality,test]
204
+ pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
205
+ python -m uv pip install pytest-reportlog
206
+
207
+ - name: Environment
208
+ run: python utils/print_env.py
209
+
210
+ - name: Run nightly Flax TPU tests
211
+ env:
212
+ HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
213
+ run: |
214
+ python -m pytest -n 0 \
215
+ -s -v -k "Flax" \
216
+ --make-reports=tests_flax_tpu \
217
+ --report-log=tests_flax_tpu.log \
218
+ tests/
219
+
220
+ - name: Failure short reports
221
+ if: ${{ failure() }}
222
+ run: |
223
+ cat reports/tests_flax_tpu_stats.txt
224
+ cat reports/tests_flax_tpu_failures_short.txt
225
+
226
+ - name: Test suite reports artifacts
227
+ if: ${{ always() }}
228
+ uses: actions/upload-artifact@v4
229
+ with:
230
+ name: flax_tpu_test_reports
231
+ path: reports
232
+
233
+ - name: Generate Report and Notify Channel
234
+ if: always()
235
+ run: |
236
+ pip install slack_sdk tabulate
237
+ python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
238
+
239
+ run_nightly_onnx_tests:
240
+ name: Nightly ONNXRuntime CUDA tests on Ubuntu
241
+ runs-on:
242
+ group: aws-g4dn-2xlarge
243
+ container:
244
+ image: diffusers/diffusers-onnxruntime-cuda
245
+ options: --gpus 0 --shm-size "16gb" --ipc host
246
+
247
+ steps:
248
+ - name: Checkout diffusers
249
+ uses: actions/checkout@v3
250
+ with:
251
+ fetch-depth: 2
252
+
253
+ - name: NVIDIA-SMI
254
+ run: nvidia-smi
255
+
256
+ - name: Install dependencies
257
+ run: |
258
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
259
+ python -m uv pip install -e [quality,test]
260
+ pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
261
+ python -m uv pip install pytest-reportlog
262
+ - name: Environment
263
+ run: python utils/print_env.py
264
+
265
+ - name: Run Nightly ONNXRuntime CUDA tests
266
+ env:
267
+ HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
268
+ run: |
269
+ python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
270
+ -s -v -k "Onnx" \
271
+ --make-reports=tests_onnx_cuda \
272
+ --report-log=tests_onnx_cuda.log \
273
+ tests/
274
+
275
+ - name: Failure short reports
276
+ if: ${{ failure() }}
277
+ run: |
278
+ cat reports/tests_onnx_cuda_stats.txt
279
+ cat reports/tests_onnx_cuda_failures_short.txt
280
+
281
+ - name: Test suite reports artifacts
282
+ if: ${{ always() }}
283
+ uses: actions/upload-artifact@v4
284
+ with:
285
+ name: tests_onnx_cuda_reports
286
+ path: reports
287
+
288
+ - name: Generate Report and Notify Channel
289
+ if: always()
290
+ run: |
291
+ pip install slack_sdk tabulate
292
+ python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
293
+
294
+ # M1 runner currently not well supported
295
+ # TODO: (Dhruv) add these back when we setup better testing for Apple Silicon
296
+ # run_nightly_tests_apple_m1:
297
+ # name: Nightly PyTorch MPS tests on MacOS
298
+ # runs-on: [ self-hosted, apple-m1 ]
299
+ # if: github.event_name == 'schedule'
300
+ #
301
+ # steps:
302
+ # - name: Checkout diffusers
303
+ # uses: actions/checkout@v3
304
+ # with:
305
+ # fetch-depth: 2
306
+ #
307
+ # - name: Clean checkout
308
+ # shell: arch -arch arm64 bash {0}
309
+ # run: |
310
+ # git clean -fxd
311
+ # - name: Setup miniconda
312
+ # uses: ./.github/actions/setup-miniconda
313
+ # with:
314
+ # python-version: 3.9
315
+ #
316
+ # - name: Install dependencies
317
+ # shell: arch -arch arm64 bash {0}
318
+ # run: |
319
+ # ${CONDA_RUN} python -m pip install --upgrade pip uv
320
+ # ${CONDA_RUN} python -m uv pip install -e [quality,test]
321
+ # ${CONDA_RUN} python -m uv pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu
322
+ # ${CONDA_RUN} python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate
323
+ # ${CONDA_RUN} python -m uv pip install pytest-reportlog
324
+ # - name: Environment
325
+ # shell: arch -arch arm64 bash {0}
326
+ # run: |
327
+ # ${CONDA_RUN} python utils/print_env.py
328
+ # - name: Run nightly PyTorch tests on M1 (MPS)
329
+ # shell: arch -arch arm64 bash {0}
330
+ # env:
331
+ # HF_HOME: /System/Volumes/Data/mnt/cache
332
+ # HF_TOKEN: ${{ secrets.HF_TOKEN }}
333
+ # run: |
334
+ # ${CONDA_RUN} python -m pytest -n 1 -s -v --make-reports=tests_torch_mps \
335
+ # --report-log=tests_torch_mps.log \
336
+ # tests/
337
+ # - name: Failure short reports
338
+ # if: ${{ failure() }}
339
+ # run: cat reports/tests_torch_mps_failures_short.txt
340
+ #
341
+ # - name: Test suite reports artifacts
342
+ # if: ${{ always() }}
343
+ # uses: actions/upload-artifact@v4
344
+ # with:
345
+ # name: torch_mps_test_reports
346
+ # path: reports
347
+ #
348
+ # - name: Generate Report and Notify Channel
349
+ # if: always()
350
+ # run: |
351
+ # pip install slack_sdk tabulate
352
+ # python utils/log_reports.py >> $GITHUB_STEP_SUMMARY run_nightly_tests_apple_m1:
353
+ # name: Nightly PyTorch MPS tests on MacOS
354
+ # runs-on: [ self-hosted, apple-m1 ]
355
+ # if: github.event_name == 'schedule'
356
+ #
357
+ # steps:
358
+ # - name: Checkout diffusers
359
+ # uses: actions/checkout@v3
360
+ # with:
361
+ # fetch-depth: 2
362
+ #
363
+ # - name: Clean checkout
364
+ # shell: arch -arch arm64 bash {0}
365
+ # run: |
366
+ # git clean -fxd
367
+ # - name: Setup miniconda
368
+ # uses: ./.github/actions/setup-miniconda
369
+ # with:
370
+ # python-version: 3.9
371
+ #
372
+ # - name: Install dependencies
373
+ # shell: arch -arch arm64 bash {0}
374
+ # run: |
375
+ # ${CONDA_RUN} python -m pip install --upgrade pip uv
376
+ # ${CONDA_RUN} python -m uv pip install -e [quality,test]
377
+ # ${CONDA_RUN} python -m uv pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu
378
+ # ${CONDA_RUN} python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate
379
+ # ${CONDA_RUN} python -m uv pip install pytest-reportlog
380
+ # - name: Environment
381
+ # shell: arch -arch arm64 bash {0}
382
+ # run: |
383
+ # ${CONDA_RUN} python utils/print_env.py
384
+ # - name: Run nightly PyTorch tests on M1 (MPS)
385
+ # shell: arch -arch arm64 bash {0}
386
+ # env:
387
+ # HF_HOME: /System/Volumes/Data/mnt/cache
388
+ # HF_TOKEN: ${{ secrets.HF_TOKEN }}
389
+ # run: |
390
+ # ${CONDA_RUN} python -m pytest -n 1 -s -v --make-reports=tests_torch_mps \
391
+ # --report-log=tests_torch_mps.log \
392
+ # tests/
393
+ # - name: Failure short reports
394
+ # if: ${{ failure() }}
395
+ # run: cat reports/tests_torch_mps_failures_short.txt
396
+ #
397
+ # - name: Test suite reports artifacts
398
+ # if: ${{ always() }}
399
+ # uses: actions/upload-artifact@v4
400
+ # with:
401
+ # name: torch_mps_test_reports
402
+ # path: reports
403
+ #
404
+ # - name: Generate Report and Notify Channel
405
+ # if: always()
406
+ # run: |
407
+ # pip install slack_sdk tabulate
408
+ # python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
diffusers/.github/workflows/notify_slack_about_release.yml ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Notify Slack about a release
2
+
3
+ on:
4
+ workflow_dispatch:
5
+ release:
6
+ types: [published]
7
+
8
+ jobs:
9
+ build:
10
+ runs-on: ubuntu-22.04
11
+
12
+ steps:
13
+ - uses: actions/checkout@v3
14
+
15
+ - name: Setup Python
16
+ uses: actions/setup-python@v4
17
+ with:
18
+ python-version: '3.8'
19
+
20
+ - name: Notify Slack about the release
21
+ env:
22
+ SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL }}
23
+ run: pip install requests && python utils/notify_slack_about_release.py
diffusers/.github/workflows/pr_dependency_test.yml ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Run dependency tests
2
+
3
+ on:
4
+ pull_request:
5
+ branches:
6
+ - main
7
+ paths:
8
+ - "src/diffusers/**.py"
9
+ push:
10
+ branches:
11
+ - main
12
+
13
+ concurrency:
14
+ group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
15
+ cancel-in-progress: true
16
+
17
+ jobs:
18
+ check_dependencies:
19
+ runs-on: ubuntu-22.04
20
+ steps:
21
+ - uses: actions/checkout@v3
22
+ - name: Set up Python
23
+ uses: actions/setup-python@v4
24
+ with:
25
+ python-version: "3.8"
26
+ - name: Install dependencies
27
+ run: |
28
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
29
+ python -m pip install --upgrade pip uv
30
+ python -m uv pip install -e .
31
+ python -m uv pip install pytest
32
+ - name: Check for soft dependencies
33
+ run: |
34
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
35
+ pytest tests/others/test_dependencies.py
diffusers/.github/workflows/pr_flax_dependency_test.yml ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Run Flax dependency tests
2
+
3
+ on:
4
+ pull_request:
5
+ branches:
6
+ - main
7
+ paths:
8
+ - "src/diffusers/**.py"
9
+ push:
10
+ branches:
11
+ - main
12
+
13
+ concurrency:
14
+ group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
15
+ cancel-in-progress: true
16
+
17
+ jobs:
18
+ check_flax_dependencies:
19
+ runs-on: ubuntu-22.04
20
+ steps:
21
+ - uses: actions/checkout@v3
22
+ - name: Set up Python
23
+ uses: actions/setup-python@v4
24
+ with:
25
+ python-version: "3.8"
26
+ - name: Install dependencies
27
+ run: |
28
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
29
+ python -m pip install --upgrade pip uv
30
+ python -m uv pip install -e .
31
+ python -m uv pip install "jax[cpu]>=0.2.16,!=0.3.2"
32
+ python -m uv pip install "flax>=0.4.1"
33
+ python -m uv pip install "jaxlib>=0.1.65"
34
+ python -m uv pip install pytest
35
+ - name: Check for soft dependencies
36
+ run: |
37
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
38
+ pytest tests/others/test_dependencies.py
diffusers/.github/workflows/pr_test_fetcher.yml ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Fast tests for PRs - Test Fetcher
2
+
3
+ on: workflow_dispatch
4
+
5
+ env:
6
+ DIFFUSERS_IS_CI: yes
7
+ OMP_NUM_THREADS: 4
8
+ MKL_NUM_THREADS: 4
9
+ PYTEST_TIMEOUT: 60
10
+
11
+ concurrency:
12
+ group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
13
+ cancel-in-progress: true
14
+
15
+ jobs:
16
+ setup_pr_tests:
17
+ name: Setup PR Tests
18
+ runs-on:
19
+ group: aws-general-8-plus
20
+ container:
21
+ image: diffusers/diffusers-pytorch-cpu
22
+ options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
23
+ defaults:
24
+ run:
25
+ shell: bash
26
+ outputs:
27
+ matrix: ${{ steps.set_matrix.outputs.matrix }}
28
+ test_map: ${{ steps.set_matrix.outputs.test_map }}
29
+ steps:
30
+ - name: Checkout diffusers
31
+ uses: actions/checkout@v3
32
+ with:
33
+ fetch-depth: 0
34
+ - name: Install dependencies
35
+ run: |
36
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
37
+ python -m uv pip install -e [quality,test]
38
+ - name: Environment
39
+ run: |
40
+ python utils/print_env.py
41
+ echo $(git --version)
42
+ - name: Fetch Tests
43
+ run: |
44
+ python utils/tests_fetcher.py | tee test_preparation.txt
45
+ - name: Report fetched tests
46
+ uses: actions/upload-artifact@v3
47
+ with:
48
+ name: test_fetched
49
+ path: test_preparation.txt
50
+ - id: set_matrix
51
+ name: Create Test Matrix
52
+ # The `keys` is used as GitHub actions matrix for jobs, i.e. `models`, `pipelines`, etc.
53
+ # The `test_map` is used to get the actual identified test files under each key.
54
+ # If no test to run (so no `test_map.json` file), create a dummy map (empty matrix will fail)
55
+ run: |
56
+ if [ -f test_map.json ]; then
57
+ keys=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); d = list(test_map.keys()); print(json.dumps(d))')
58
+ test_map=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); print(json.dumps(test_map))')
59
+ else
60
+ keys=$(python3 -c 'keys = ["dummy"]; print(keys)')
61
+ test_map=$(python3 -c 'test_map = {"dummy": []}; print(test_map)')
62
+ fi
63
+ echo $keys
64
+ echo $test_map
65
+ echo "matrix=$keys" >> $GITHUB_OUTPUT
66
+ echo "test_map=$test_map" >> $GITHUB_OUTPUT
67
+
68
+ run_pr_tests:
69
+ name: Run PR Tests
70
+ needs: setup_pr_tests
71
+ if: contains(fromJson(needs.setup_pr_tests.outputs.matrix), 'dummy') != true
72
+ strategy:
73
+ fail-fast: false
74
+ max-parallel: 2
75
+ matrix:
76
+ modules: ${{ fromJson(needs.setup_pr_tests.outputs.matrix) }}
77
+ runs-on:
78
+ group: aws-general-8-plus
79
+ container:
80
+ image: diffusers/diffusers-pytorch-cpu
81
+ options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
82
+ defaults:
83
+ run:
84
+ shell: bash
85
+ steps:
86
+ - name: Checkout diffusers
87
+ uses: actions/checkout@v3
88
+ with:
89
+ fetch-depth: 2
90
+
91
+ - name: Install dependencies
92
+ run: |
93
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
94
+ python -m pip install -e [quality,test]
95
+ python -m pip install accelerate
96
+
97
+ - name: Environment
98
+ run: |
99
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
100
+ python utils/print_env.py
101
+
102
+ - name: Run all selected tests on CPU
103
+ run: |
104
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
105
+ python -m pytest -n 2 --dist=loadfile -v --make-reports=${{ matrix.modules }}_tests_cpu ${{ fromJson(needs.setup_pr_tests.outputs.test_map)[matrix.modules] }}
106
+
107
+ - name: Failure short reports
108
+ if: ${{ failure() }}
109
+ continue-on-error: true
110
+ run: |
111
+ cat reports/${{ matrix.modules }}_tests_cpu_stats.txt
112
+ cat reports/${{ matrix.modules }}_tests_cpu_failures_short.txt
113
+
114
+ - name: Test suite reports artifacts
115
+ if: ${{ always() }}
116
+ uses: actions/upload-artifact@v3
117
+ with:
118
+ name: ${{ matrix.modules }}_test_reports
119
+ path: reports
120
+
121
+ run_staging_tests:
122
+ strategy:
123
+ fail-fast: false
124
+ matrix:
125
+ config:
126
+ - name: Hub tests for models, schedulers, and pipelines
127
+ framework: hub_tests_pytorch
128
+ runner: aws-general-8-plus
129
+ image: diffusers/diffusers-pytorch-cpu
130
+ report: torch_hub
131
+
132
+ name: ${{ matrix.config.name }}
133
+ runs-on:
134
+ group: ${{ matrix.config.runner }}
135
+ container:
136
+ image: ${{ matrix.config.image }}
137
+ options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
138
+
139
+ defaults:
140
+ run:
141
+ shell: bash
142
+
143
+ steps:
144
+ - name: Checkout diffusers
145
+ uses: actions/checkout@v3
146
+ with:
147
+ fetch-depth: 2
148
+
149
+ - name: Install dependencies
150
+ run: |
151
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
152
+ python -m pip install -e [quality,test]
153
+
154
+ - name: Environment
155
+ run: |
156
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
157
+ python utils/print_env.py
158
+
159
+ - name: Run Hub tests for models, schedulers, and pipelines on a staging env
160
+ if: ${{ matrix.config.framework == 'hub_tests_pytorch' }}
161
+ run: |
162
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
163
+ HUGGINGFACE_CO_STAGING=true python -m pytest \
164
+ -m "is_staging_test" \
165
+ --make-reports=tests_${{ matrix.config.report }} \
166
+ tests
167
+
168
+ - name: Failure short reports
169
+ if: ${{ failure() }}
170
+ run: cat reports/tests_${{ matrix.config.report }}_failures_short.txt
171
+
172
+ - name: Test suite reports artifacts
173
+ if: ${{ always() }}
174
+ uses: actions/upload-artifact@v4
175
+ with:
176
+ name: pr_${{ matrix.config.report }}_test_reports
177
+ path: reports
diffusers/.github/workflows/pr_test_peft_backend.yml ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Fast tests for PRs - PEFT backend
2
+
3
+ on:
4
+ pull_request:
5
+ branches:
6
+ - main
7
+ paths:
8
+ - "src/diffusers/**.py"
9
+ - "tests/**.py"
10
+
11
+ concurrency:
12
+ group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
13
+ cancel-in-progress: true
14
+
15
+ env:
16
+ DIFFUSERS_IS_CI: yes
17
+ OMP_NUM_THREADS: 4
18
+ MKL_NUM_THREADS: 4
19
+ PYTEST_TIMEOUT: 60
20
+
21
+ jobs:
22
+ check_code_quality:
23
+ runs-on: ubuntu-22.04
24
+ steps:
25
+ - uses: actions/checkout@v3
26
+ - name: Set up Python
27
+ uses: actions/setup-python@v4
28
+ with:
29
+ python-version: "3.8"
30
+ - name: Install dependencies
31
+ run: |
32
+ python -m pip install --upgrade pip
33
+ pip install .[quality]
34
+ - name: Check quality
35
+ run: make quality
36
+ - name: Check if failure
37
+ if: ${{ failure() }}
38
+ run: |
39
+ echo "Quality check failed. Please ensure the right dependency versions are installed with 'pip install -e .[quality]' and run 'make style && make quality'" >> $GITHUB_STEP_SUMMARY
40
+
41
+ check_repository_consistency:
42
+ needs: check_code_quality
43
+ runs-on: ubuntu-22.04
44
+ steps:
45
+ - uses: actions/checkout@v3
46
+ - name: Set up Python
47
+ uses: actions/setup-python@v4
48
+ with:
49
+ python-version: "3.8"
50
+ - name: Install dependencies
51
+ run: |
52
+ python -m pip install --upgrade pip
53
+ pip install .[quality]
54
+ - name: Check repo consistency
55
+ run: |
56
+ python utils/check_copies.py
57
+ python utils/check_dummies.py
58
+ make deps_table_check_updated
59
+ - name: Check if failure
60
+ if: ${{ failure() }}
61
+ run: |
62
+ echo "Repo consistency check failed. Please ensure the right dependency versions are installed with 'pip install -e .[quality]' and run 'make fix-copies'" >> $GITHUB_STEP_SUMMARY
63
+
64
+ run_fast_tests:
65
+ needs: [check_code_quality, check_repository_consistency]
66
+ strategy:
67
+ fail-fast: false
68
+ matrix:
69
+ lib-versions: ["main", "latest"]
70
+
71
+
72
+ name: LoRA - ${{ matrix.lib-versions }}
73
+
74
+ runs-on:
75
+ group: aws-general-8-plus
76
+
77
+ container:
78
+ image: diffusers/diffusers-pytorch-cpu
79
+ options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
80
+
81
+ defaults:
82
+ run:
83
+ shell: bash
84
+
85
+ steps:
86
+ - name: Checkout diffusers
87
+ uses: actions/checkout@v3
88
+ with:
89
+ fetch-depth: 2
90
+
91
+ - name: Install dependencies
92
+ run: |
93
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
94
+ python -m uv pip install -e [quality,test]
95
+ # TODO (sayakpaul, DN6): revisit `--no-deps`
96
+ if [ "${{ matrix.lib-versions }}" == "main" ]; then
97
+ python -m pip install -U peft@git+https://github.com/huggingface/peft.git --no-deps
98
+ python -m uv pip install -U transformers@git+https://github.com/huggingface/transformers.git --no-deps
99
+ pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git --no-deps
100
+ else
101
+ python -m uv pip install -U peft --no-deps
102
+ python -m uv pip install -U transformers accelerate --no-deps
103
+ fi
104
+
105
+ - name: Environment
106
+ run: |
107
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
108
+ python utils/print_env.py
109
+
110
+ - name: Run fast PyTorch LoRA CPU tests with PEFT backend
111
+ run: |
112
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
113
+ python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
114
+ -s -v \
115
+ --make-reports=tests_${{ matrix.lib-versions }} \
116
+ tests/lora/
117
+ python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
118
+ -s -v \
119
+ --make-reports=tests_models_lora_${{ matrix.lib-versions }} \
120
+ tests/models/ -k "lora"
121
+
122
+
123
+ - name: Failure short reports
124
+ if: ${{ failure() }}
125
+ run: |
126
+ cat reports/tests_${{ matrix.lib-versions }}_failures_short.txt
127
+ cat reports/tests_models_lora_${{ matrix.lib-versions }}_failures_short.txt
128
+
129
+ - name: Test suite reports artifacts
130
+ if: ${{ always() }}
131
+ uses: actions/upload-artifact@v4
132
+ with:
133
+ name: pr_${{ matrix.lib-versions }}_test_reports
134
+ path: reports
diffusers/.github/workflows/pr_tests.yml ADDED
@@ -0,0 +1,236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Fast tests for PRs
2
+
3
+ on:
4
+ pull_request:
5
+ branches:
6
+ - main
7
+ paths:
8
+ - "src/diffusers/**.py"
9
+ - "benchmarks/**.py"
10
+ - "examples/**.py"
11
+ - "scripts/**.py"
12
+ - "tests/**.py"
13
+ - ".github/**.yml"
14
+ - "utils/**.py"
15
+ push:
16
+ branches:
17
+ - ci-*
18
+
19
+ concurrency:
20
+ group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
21
+ cancel-in-progress: true
22
+
23
+ env:
24
+ DIFFUSERS_IS_CI: yes
25
+ HF_HUB_ENABLE_HF_TRANSFER: 1
26
+ OMP_NUM_THREADS: 4
27
+ MKL_NUM_THREADS: 4
28
+ PYTEST_TIMEOUT: 60
29
+
30
+ jobs:
31
+ check_code_quality:
32
+ runs-on: ubuntu-22.04
33
+ steps:
34
+ - uses: actions/checkout@v3
35
+ - name: Set up Python
36
+ uses: actions/setup-python@v4
37
+ with:
38
+ python-version: "3.8"
39
+ - name: Install dependencies
40
+ run: |
41
+ python -m pip install --upgrade pip
42
+ pip install .[quality]
43
+ - name: Check quality
44
+ run: make quality
45
+ - name: Check if failure
46
+ if: ${{ failure() }}
47
+ run: |
48
+ echo "Quality check failed. Please ensure the right dependency versions are installed with 'pip install -e .[quality]' and run 'make style && make quality'" >> $GITHUB_STEP_SUMMARY
49
+
50
+ check_repository_consistency:
51
+ needs: check_code_quality
52
+ runs-on: ubuntu-22.04
53
+ steps:
54
+ - uses: actions/checkout@v3
55
+ - name: Set up Python
56
+ uses: actions/setup-python@v4
57
+ with:
58
+ python-version: "3.8"
59
+ - name: Install dependencies
60
+ run: |
61
+ python -m pip install --upgrade pip
62
+ pip install .[quality]
63
+ - name: Check repo consistency
64
+ run: |
65
+ python utils/check_copies.py
66
+ python utils/check_dummies.py
67
+ make deps_table_check_updated
68
+ - name: Check if failure
69
+ if: ${{ failure() }}
70
+ run: |
71
+ echo "Repo consistency check failed. Please ensure the right dependency versions are installed with 'pip install -e .[quality]' and run 'make fix-copies'" >> $GITHUB_STEP_SUMMARY
72
+
73
+ run_fast_tests:
74
+ needs: [check_code_quality, check_repository_consistency]
75
+ strategy:
76
+ fail-fast: false
77
+ matrix:
78
+ config:
79
+ - name: Fast PyTorch Pipeline CPU tests
80
+ framework: pytorch_pipelines
81
+ runner: aws-highmemory-32-plus
82
+ image: diffusers/diffusers-pytorch-cpu
83
+ report: torch_cpu_pipelines
84
+ - name: Fast PyTorch Models & Schedulers CPU tests
85
+ framework: pytorch_models
86
+ runner: aws-general-8-plus
87
+ image: diffusers/diffusers-pytorch-cpu
88
+ report: torch_cpu_models_schedulers
89
+ - name: Fast Flax CPU tests
90
+ framework: flax
91
+ runner: aws-general-8-plus
92
+ image: diffusers/diffusers-flax-cpu
93
+ report: flax_cpu
94
+ - name: PyTorch Example CPU tests
95
+ framework: pytorch_examples
96
+ runner: aws-general-8-plus
97
+ image: diffusers/diffusers-pytorch-cpu
98
+ report: torch_example_cpu
99
+
100
+ name: ${{ matrix.config.name }}
101
+
102
+ runs-on:
103
+ group: ${{ matrix.config.runner }}
104
+
105
+ container:
106
+ image: ${{ matrix.config.image }}
107
+ options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
108
+
109
+ defaults:
110
+ run:
111
+ shell: bash
112
+
113
+ steps:
114
+ - name: Checkout diffusers
115
+ uses: actions/checkout@v3
116
+ with:
117
+ fetch-depth: 2
118
+
119
+ - name: Install dependencies
120
+ run: |
121
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
122
+ python -m uv pip install -e [quality,test]
123
+ python -m uv pip install accelerate
124
+
125
+ - name: Environment
126
+ run: |
127
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
128
+ python utils/print_env.py
129
+
130
+ - name: Run fast PyTorch Pipeline CPU tests
131
+ if: ${{ matrix.config.framework == 'pytorch_pipelines' }}
132
+ run: |
133
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
134
+ python -m pytest -n 8 --max-worker-restart=0 --dist=loadfile \
135
+ -s -v -k "not Flax and not Onnx" \
136
+ --make-reports=tests_${{ matrix.config.report }} \
137
+ tests/pipelines
138
+
139
+ - name: Run fast PyTorch Model Scheduler CPU tests
140
+ if: ${{ matrix.config.framework == 'pytorch_models' }}
141
+ run: |
142
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
143
+ python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
144
+ -s -v -k "not Flax and not Onnx and not Dependency" \
145
+ --make-reports=tests_${{ matrix.config.report }} \
146
+ tests/models tests/schedulers tests/others
147
+
148
+ - name: Run fast Flax TPU tests
149
+ if: ${{ matrix.config.framework == 'flax' }}
150
+ run: |
151
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
152
+ python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
153
+ -s -v -k "Flax" \
154
+ --make-reports=tests_${{ matrix.config.report }} \
155
+ tests
156
+
157
+ - name: Run example PyTorch CPU tests
158
+ if: ${{ matrix.config.framework == 'pytorch_examples' }}
159
+ run: |
160
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
161
+ python -m uv pip install peft timm
162
+ python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
163
+ --make-reports=tests_${{ matrix.config.report }} \
164
+ examples
165
+
166
+ - name: Failure short reports
167
+ if: ${{ failure() }}
168
+ run: cat reports/tests_${{ matrix.config.report }}_failures_short.txt
169
+
170
+ - name: Test suite reports artifacts
171
+ if: ${{ always() }}
172
+ uses: actions/upload-artifact@v4
173
+ with:
174
+ name: pr_${{ matrix.config.framework }}_${{ matrix.config.report }}_test_reports
175
+ path: reports
176
+
177
+ run_staging_tests:
178
+ needs: [check_code_quality, check_repository_consistency]
179
+ strategy:
180
+ fail-fast: false
181
+ matrix:
182
+ config:
183
+ - name: Hub tests for models, schedulers, and pipelines
184
+ framework: hub_tests_pytorch
185
+ runner:
186
+ group: aws-general-8-plus
187
+ image: diffusers/diffusers-pytorch-cpu
188
+ report: torch_hub
189
+
190
+ name: ${{ matrix.config.name }}
191
+
192
+ runs-on: ${{ matrix.config.runner }}
193
+
194
+ container:
195
+ image: ${{ matrix.config.image }}
196
+ options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
197
+
198
+ defaults:
199
+ run:
200
+ shell: bash
201
+
202
+ steps:
203
+ - name: Checkout diffusers
204
+ uses: actions/checkout@v3
205
+ with:
206
+ fetch-depth: 2
207
+
208
+ - name: Install dependencies
209
+ run: |
210
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
211
+ python -m uv pip install -e [quality,test]
212
+
213
+ - name: Environment
214
+ run: |
215
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
216
+ python utils/print_env.py
217
+
218
+ - name: Run Hub tests for models, schedulers, and pipelines on a staging env
219
+ if: ${{ matrix.config.framework == 'hub_tests_pytorch' }}
220
+ run: |
221
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
222
+ HUGGINGFACE_CO_STAGING=true python -m pytest \
223
+ -m "is_staging_test" \
224
+ --make-reports=tests_${{ matrix.config.report }} \
225
+ tests
226
+
227
+ - name: Failure short reports
228
+ if: ${{ failure() }}
229
+ run: cat reports/tests_${{ matrix.config.report }}_failures_short.txt
230
+
231
+ - name: Test suite reports artifacts
232
+ if: ${{ always() }}
233
+ uses: actions/upload-artifact@v4
234
+ with:
235
+ name: pr_${{ matrix.config.report }}_test_reports
236
+ path: reports
diffusers/.github/workflows/pr_torch_dependency_test.yml ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Run Torch dependency tests
2
+
3
+ on:
4
+ pull_request:
5
+ branches:
6
+ - main
7
+ paths:
8
+ - "src/diffusers/**.py"
9
+ push:
10
+ branches:
11
+ - main
12
+
13
+ concurrency:
14
+ group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
15
+ cancel-in-progress: true
16
+
17
+ jobs:
18
+ check_torch_dependencies:
19
+ runs-on: ubuntu-22.04
20
+ steps:
21
+ - uses: actions/checkout@v3
22
+ - name: Set up Python
23
+ uses: actions/setup-python@v4
24
+ with:
25
+ python-version: "3.8"
26
+ - name: Install dependencies
27
+ run: |
28
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
29
+ python -m pip install --upgrade pip uv
30
+ python -m uv pip install -e .
31
+ python -m uv pip install torch torchvision torchaudio
32
+ python -m uv pip install pytest
33
+ - name: Check for soft dependencies
34
+ run: |
35
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
36
+ pytest tests/others/test_dependencies.py
diffusers/.github/workflows/push_tests.yml ADDED
@@ -0,0 +1,391 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Fast GPU Tests on main
2
+
3
+ on:
4
+ workflow_dispatch:
5
+ push:
6
+ branches:
7
+ - main
8
+ paths:
9
+ - "src/diffusers/**.py"
10
+ - "examples/**.py"
11
+ - "tests/**.py"
12
+
13
+ env:
14
+ DIFFUSERS_IS_CI: yes
15
+ OMP_NUM_THREADS: 8
16
+ MKL_NUM_THREADS: 8
17
+ HF_HUB_ENABLE_HF_TRANSFER: 1
18
+ PYTEST_TIMEOUT: 600
19
+ PIPELINE_USAGE_CUTOFF: 50000
20
+
21
+ jobs:
22
+ setup_torch_cuda_pipeline_matrix:
23
+ name: Setup Torch Pipelines CUDA Slow Tests Matrix
24
+ runs-on:
25
+ group: aws-general-8-plus
26
+ container:
27
+ image: diffusers/diffusers-pytorch-cpu
28
+ outputs:
29
+ pipeline_test_matrix: ${{ steps.fetch_pipeline_matrix.outputs.pipeline_test_matrix }}
30
+ steps:
31
+ - name: Checkout diffusers
32
+ uses: actions/checkout@v3
33
+ with:
34
+ fetch-depth: 2
35
+ - name: Install dependencies
36
+ run: |
37
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
38
+ python -m uv pip install -e [quality,test]
39
+ - name: Environment
40
+ run: |
41
+ python utils/print_env.py
42
+ - name: Fetch Pipeline Matrix
43
+ id: fetch_pipeline_matrix
44
+ run: |
45
+ matrix=$(python utils/fetch_torch_cuda_pipeline_test_matrix.py)
46
+ echo $matrix
47
+ echo "pipeline_test_matrix=$matrix" >> $GITHUB_OUTPUT
48
+ - name: Pipeline Tests Artifacts
49
+ if: ${{ always() }}
50
+ uses: actions/upload-artifact@v4
51
+ with:
52
+ name: test-pipelines.json
53
+ path: reports
54
+
55
+ torch_pipelines_cuda_tests:
56
+ name: Torch Pipelines CUDA Tests
57
+ needs: setup_torch_cuda_pipeline_matrix
58
+ strategy:
59
+ fail-fast: false
60
+ max-parallel: 8
61
+ matrix:
62
+ module: ${{ fromJson(needs.setup_torch_cuda_pipeline_matrix.outputs.pipeline_test_matrix) }}
63
+ runs-on:
64
+ group: aws-g4dn-2xlarge
65
+ container:
66
+ image: diffusers/diffusers-pytorch-cuda
67
+ options: --shm-size "16gb" --ipc host --gpus 0
68
+ steps:
69
+ - name: Checkout diffusers
70
+ uses: actions/checkout@v3
71
+ with:
72
+ fetch-depth: 2
73
+ - name: NVIDIA-SMI
74
+ run: |
75
+ nvidia-smi
76
+ - name: Install dependencies
77
+ run: |
78
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
79
+ python -m uv pip install -e [quality,test]
80
+ pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
81
+ - name: Environment
82
+ run: |
83
+ python utils/print_env.py
84
+ - name: Slow PyTorch CUDA checkpoint tests on Ubuntu
85
+ env:
86
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
87
+ # https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
88
+ CUBLAS_WORKSPACE_CONFIG: :16:8
89
+ run: |
90
+ python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
91
+ -s -v -k "not Flax and not Onnx" \
92
+ --make-reports=tests_pipeline_${{ matrix.module }}_cuda \
93
+ tests/pipelines/${{ matrix.module }}
94
+ - name: Failure short reports
95
+ if: ${{ failure() }}
96
+ run: |
97
+ cat reports/tests_pipeline_${{ matrix.module }}_cuda_stats.txt
98
+ cat reports/tests_pipeline_${{ matrix.module }}_cuda_failures_short.txt
99
+ - name: Test suite reports artifacts
100
+ if: ${{ always() }}
101
+ uses: actions/upload-artifact@v4
102
+ with:
103
+ name: pipeline_${{ matrix.module }}_test_reports
104
+ path: reports
105
+
106
+ torch_cuda_tests:
107
+ name: Torch CUDA Tests
108
+ runs-on:
109
+ group: aws-g4dn-2xlarge
110
+ container:
111
+ image: diffusers/diffusers-pytorch-cuda
112
+ options: --shm-size "16gb" --ipc host --gpus 0
113
+ defaults:
114
+ run:
115
+ shell: bash
116
+ strategy:
117
+ fail-fast: false
118
+ max-parallel: 2
119
+ matrix:
120
+ module: [models, schedulers, lora, others, single_file]
121
+ steps:
122
+ - name: Checkout diffusers
123
+ uses: actions/checkout@v3
124
+ with:
125
+ fetch-depth: 2
126
+
127
+ - name: Install dependencies
128
+ run: |
129
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
130
+ python -m uv pip install -e [quality,test]
131
+ python -m uv pip install peft@git+https://github.com/huggingface/peft.git
132
+ pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
133
+
134
+ - name: Environment
135
+ run: |
136
+ python utils/print_env.py
137
+
138
+ - name: Run PyTorch CUDA tests
139
+ env:
140
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
141
+ # https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
142
+ CUBLAS_WORKSPACE_CONFIG: :16:8
143
+ run: |
144
+ python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
145
+ -s -v -k "not Flax and not Onnx" \
146
+ --make-reports=tests_torch_cuda_${{ matrix.module }} \
147
+ tests/${{ matrix.module }}
148
+
149
+ - name: Failure short reports
150
+ if: ${{ failure() }}
151
+ run: |
152
+ cat reports/tests_torch_cuda_${{ matrix.module }}_stats.txt
153
+ cat reports/tests_torch_cuda_${{ matrix.module }}_failures_short.txt
154
+
155
+ - name: Test suite reports artifacts
156
+ if: ${{ always() }}
157
+ uses: actions/upload-artifact@v4
158
+ with:
159
+ name: torch_cuda_test_reports_${{ matrix.module }}
160
+ path: reports
161
+
162
+ flax_tpu_tests:
163
+ name: Flax TPU Tests
164
+ runs-on: docker-tpu
165
+ container:
166
+ image: diffusers/diffusers-flax-tpu
167
+ options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ --privileged
168
+ defaults:
169
+ run:
170
+ shell: bash
171
+ steps:
172
+ - name: Checkout diffusers
173
+ uses: actions/checkout@v3
174
+ with:
175
+ fetch-depth: 2
176
+
177
+ - name: Install dependencies
178
+ run: |
179
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
180
+ python -m uv pip install -e [quality,test]
181
+ pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
182
+
183
+ - name: Environment
184
+ run: |
185
+ python utils/print_env.py
186
+
187
+ - name: Run slow Flax TPU tests
188
+ env:
189
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
190
+ run: |
191
+ python -m pytest -n 0 \
192
+ -s -v -k "Flax" \
193
+ --make-reports=tests_flax_tpu \
194
+ tests/
195
+
196
+ - name: Failure short reports
197
+ if: ${{ failure() }}
198
+ run: |
199
+ cat reports/tests_flax_tpu_stats.txt
200
+ cat reports/tests_flax_tpu_failures_short.txt
201
+
202
+ - name: Test suite reports artifacts
203
+ if: ${{ always() }}
204
+ uses: actions/upload-artifact@v4
205
+ with:
206
+ name: flax_tpu_test_reports
207
+ path: reports
208
+
209
+ onnx_cuda_tests:
210
+ name: ONNX CUDA Tests
211
+ runs-on:
212
+ group: aws-g4dn-2xlarge
213
+ container:
214
+ image: diffusers/diffusers-onnxruntime-cuda
215
+ options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ --gpus 0
216
+ defaults:
217
+ run:
218
+ shell: bash
219
+ steps:
220
+ - name: Checkout diffusers
221
+ uses: actions/checkout@v3
222
+ with:
223
+ fetch-depth: 2
224
+
225
+ - name: Install dependencies
226
+ run: |
227
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
228
+ python -m uv pip install -e [quality,test]
229
+ pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
230
+
231
+ - name: Environment
232
+ run: |
233
+ python utils/print_env.py
234
+
235
+ - name: Run slow ONNXRuntime CUDA tests
236
+ env:
237
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
238
+ run: |
239
+ python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
240
+ -s -v -k "Onnx" \
241
+ --make-reports=tests_onnx_cuda \
242
+ tests/
243
+
244
+ - name: Failure short reports
245
+ if: ${{ failure() }}
246
+ run: |
247
+ cat reports/tests_onnx_cuda_stats.txt
248
+ cat reports/tests_onnx_cuda_failures_short.txt
249
+
250
+ - name: Test suite reports artifacts
251
+ if: ${{ always() }}
252
+ uses: actions/upload-artifact@v4
253
+ with:
254
+ name: onnx_cuda_test_reports
255
+ path: reports
256
+
257
+ run_torch_compile_tests:
258
+ name: PyTorch Compile CUDA tests
259
+
260
+ runs-on:
261
+ group: aws-g4dn-2xlarge
262
+
263
+ container:
264
+ image: diffusers/diffusers-pytorch-compile-cuda
265
+ options: --gpus 0 --shm-size "16gb" --ipc host
266
+
267
+ steps:
268
+ - name: Checkout diffusers
269
+ uses: actions/checkout@v3
270
+ with:
271
+ fetch-depth: 2
272
+
273
+ - name: NVIDIA-SMI
274
+ run: |
275
+ nvidia-smi
276
+ - name: Install dependencies
277
+ run: |
278
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
279
+ python -m uv pip install -e [quality,test,training]
280
+ - name: Environment
281
+ run: |
282
+ python utils/print_env.py
283
+ - name: Run example tests on GPU
284
+ env:
285
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
286
+ RUN_COMPILE: yes
287
+ run: |
288
+ python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "compile" --make-reports=tests_torch_compile_cuda tests/
289
+ - name: Failure short reports
290
+ if: ${{ failure() }}
291
+ run: cat reports/tests_torch_compile_cuda_failures_short.txt
292
+
293
+ - name: Test suite reports artifacts
294
+ if: ${{ always() }}
295
+ uses: actions/upload-artifact@v4
296
+ with:
297
+ name: torch_compile_test_reports
298
+ path: reports
299
+
300
+ run_xformers_tests:
301
+ name: PyTorch xformers CUDA tests
302
+
303
+ runs-on:
304
+ group: aws-g4dn-2xlarge
305
+
306
+ container:
307
+ image: diffusers/diffusers-pytorch-xformers-cuda
308
+ options: --gpus 0 --shm-size "16gb" --ipc host
309
+
310
+ steps:
311
+ - name: Checkout diffusers
312
+ uses: actions/checkout@v3
313
+ with:
314
+ fetch-depth: 2
315
+
316
+ - name: NVIDIA-SMI
317
+ run: |
318
+ nvidia-smi
319
+ - name: Install dependencies
320
+ run: |
321
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
322
+ python -m uv pip install -e [quality,test,training]
323
+ - name: Environment
324
+ run: |
325
+ python utils/print_env.py
326
+ - name: Run example tests on GPU
327
+ env:
328
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
329
+ run: |
330
+ python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "xformers" --make-reports=tests_torch_xformers_cuda tests/
331
+ - name: Failure short reports
332
+ if: ${{ failure() }}
333
+ run: cat reports/tests_torch_xformers_cuda_failures_short.txt
334
+
335
+ - name: Test suite reports artifacts
336
+ if: ${{ always() }}
337
+ uses: actions/upload-artifact@v4
338
+ with:
339
+ name: torch_xformers_test_reports
340
+ path: reports
341
+
342
+ run_examples_tests:
343
+ name: Examples PyTorch CUDA tests on Ubuntu
344
+
345
+ runs-on:
346
+ group: aws-g4dn-2xlarge
347
+
348
+ container:
349
+ image: diffusers/diffusers-pytorch-cuda
350
+ options: --gpus 0 --shm-size "16gb" --ipc host
351
+
352
+ steps:
353
+ - name: Checkout diffusers
354
+ uses: actions/checkout@v3
355
+ with:
356
+ fetch-depth: 2
357
+
358
+ - name: NVIDIA-SMI
359
+ run: |
360
+ nvidia-smi
361
+
362
+ - name: Install dependencies
363
+ run: |
364
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
365
+ python -m uv pip install -e [quality,test,training]
366
+
367
+ - name: Environment
368
+ run: |
369
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
370
+ python utils/print_env.py
371
+
372
+ - name: Run example tests on GPU
373
+ env:
374
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
375
+ run: |
376
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
377
+ python -m uv pip install timm
378
+ python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v --make-reports=examples_torch_cuda examples/
379
+
380
+ - name: Failure short reports
381
+ if: ${{ failure() }}
382
+ run: |
383
+ cat reports/examples_torch_cuda_stats.txt
384
+ cat reports/examples_torch_cuda_failures_short.txt
385
+
386
+ - name: Test suite reports artifacts
387
+ if: ${{ always() }}
388
+ uses: actions/upload-artifact@v4
389
+ with:
390
+ name: examples_test_reports
391
+ path: reports
diffusers/.github/workflows/push_tests_fast.yml ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Fast tests on main
2
+
3
+ on:
4
+ push:
5
+ branches:
6
+ - main
7
+ paths:
8
+ - "src/diffusers/**.py"
9
+ - "examples/**.py"
10
+ - "tests/**.py"
11
+
12
+ concurrency:
13
+ group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
14
+ cancel-in-progress: true
15
+
16
+ env:
17
+ DIFFUSERS_IS_CI: yes
18
+ HF_HOME: /mnt/cache
19
+ OMP_NUM_THREADS: 8
20
+ MKL_NUM_THREADS: 8
21
+ HF_HUB_ENABLE_HF_TRANSFER: 1
22
+ PYTEST_TIMEOUT: 600
23
+ RUN_SLOW: no
24
+
25
+ jobs:
26
+ run_fast_tests:
27
+ strategy:
28
+ fail-fast: false
29
+ matrix:
30
+ config:
31
+ - name: Fast PyTorch CPU tests on Ubuntu
32
+ framework: pytorch
33
+ runner: aws-general-8-plus
34
+ image: diffusers/diffusers-pytorch-cpu
35
+ report: torch_cpu
36
+ - name: Fast Flax CPU tests on Ubuntu
37
+ framework: flax
38
+ runner: aws-general-8-plus
39
+ image: diffusers/diffusers-flax-cpu
40
+ report: flax_cpu
41
+ - name: Fast ONNXRuntime CPU tests on Ubuntu
42
+ framework: onnxruntime
43
+ runner: aws-general-8-plus
44
+ image: diffusers/diffusers-onnxruntime-cpu
45
+ report: onnx_cpu
46
+ - name: PyTorch Example CPU tests on Ubuntu
47
+ framework: pytorch_examples
48
+ runner: aws-general-8-plus
49
+ image: diffusers/diffusers-pytorch-cpu
50
+ report: torch_example_cpu
51
+
52
+ name: ${{ matrix.config.name }}
53
+
54
+ runs-on:
55
+ group: ${{ matrix.config.runner }}
56
+
57
+ container:
58
+ image: ${{ matrix.config.image }}
59
+ options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
60
+
61
+ defaults:
62
+ run:
63
+ shell: bash
64
+
65
+ steps:
66
+ - name: Checkout diffusers
67
+ uses: actions/checkout@v3
68
+ with:
69
+ fetch-depth: 2
70
+
71
+ - name: Install dependencies
72
+ run: |
73
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
74
+ python -m uv pip install -e [quality,test]
75
+
76
+ - name: Environment
77
+ run: |
78
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
79
+ python utils/print_env.py
80
+
81
+ - name: Run fast PyTorch CPU tests
82
+ if: ${{ matrix.config.framework == 'pytorch' }}
83
+ run: |
84
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
85
+ python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
86
+ -s -v -k "not Flax and not Onnx" \
87
+ --make-reports=tests_${{ matrix.config.report }} \
88
+ tests/
89
+
90
+ - name: Run fast Flax TPU tests
91
+ if: ${{ matrix.config.framework == 'flax' }}
92
+ run: |
93
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
94
+ python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
95
+ -s -v -k "Flax" \
96
+ --make-reports=tests_${{ matrix.config.report }} \
97
+ tests/
98
+
99
+ - name: Run fast ONNXRuntime CPU tests
100
+ if: ${{ matrix.config.framework == 'onnxruntime' }}
101
+ run: |
102
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
103
+ python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
104
+ -s -v -k "Onnx" \
105
+ --make-reports=tests_${{ matrix.config.report }} \
106
+ tests/
107
+
108
+ - name: Run example PyTorch CPU tests
109
+ if: ${{ matrix.config.framework == 'pytorch_examples' }}
110
+ run: |
111
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
112
+ python -m uv pip install peft timm
113
+ python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
114
+ --make-reports=tests_${{ matrix.config.report }} \
115
+ examples
116
+
117
+ - name: Failure short reports
118
+ if: ${{ failure() }}
119
+ run: cat reports/tests_${{ matrix.config.report }}_failures_short.txt
120
+
121
+ - name: Test suite reports artifacts
122
+ if: ${{ always() }}
123
+ uses: actions/upload-artifact@v4
124
+ with:
125
+ name: pr_${{ matrix.config.report }}_test_reports
126
+ path: reports
diffusers/.github/workflows/push_tests_mps.yml ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Fast mps tests on main
2
+
3
+ on:
4
+ push:
5
+ branches:
6
+ - main
7
+ paths:
8
+ - "src/diffusers/**.py"
9
+ - "tests/**.py"
10
+
11
+ env:
12
+ DIFFUSERS_IS_CI: yes
13
+ HF_HOME: /mnt/cache
14
+ OMP_NUM_THREADS: 8
15
+ MKL_NUM_THREADS: 8
16
+ HF_HUB_ENABLE_HF_TRANSFER: 1
17
+ PYTEST_TIMEOUT: 600
18
+ RUN_SLOW: no
19
+
20
+ concurrency:
21
+ group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
22
+ cancel-in-progress: true
23
+
24
+ jobs:
25
+ run_fast_tests_apple_m1:
26
+ name: Fast PyTorch MPS tests on MacOS
27
+ runs-on: macos-13-xlarge
28
+
29
+ steps:
30
+ - name: Checkout diffusers
31
+ uses: actions/checkout@v3
32
+ with:
33
+ fetch-depth: 2
34
+
35
+ - name: Clean checkout
36
+ shell: arch -arch arm64 bash {0}
37
+ run: |
38
+ git clean -fxd
39
+
40
+ - name: Setup miniconda
41
+ uses: ./.github/actions/setup-miniconda
42
+ with:
43
+ python-version: 3.9
44
+
45
+ - name: Install dependencies
46
+ shell: arch -arch arm64 bash {0}
47
+ run: |
48
+ ${CONDA_RUN} python -m pip install --upgrade pip uv
49
+ ${CONDA_RUN} python -m uv pip install -e [quality,test]
50
+ ${CONDA_RUN} python -m uv pip install torch torchvision torchaudio
51
+ ${CONDA_RUN} python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
52
+ ${CONDA_RUN} python -m uv pip install transformers --upgrade
53
+
54
+ - name: Environment
55
+ shell: arch -arch arm64 bash {0}
56
+ run: |
57
+ ${CONDA_RUN} python utils/print_env.py
58
+
59
+ - name: Run fast PyTorch tests on M1 (MPS)
60
+ shell: arch -arch arm64 bash {0}
61
+ env:
62
+ HF_HOME: /System/Volumes/Data/mnt/cache
63
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
64
+ run: |
65
+ ${CONDA_RUN} python -m pytest -n 0 -s -v --make-reports=tests_torch_mps tests/
66
+
67
+ - name: Failure short reports
68
+ if: ${{ failure() }}
69
+ run: cat reports/tests_torch_mps_failures_short.txt
70
+
71
+ - name: Test suite reports artifacts
72
+ if: ${{ always() }}
73
+ uses: actions/upload-artifact@v4
74
+ with:
75
+ name: pr_torch_mps_test_reports
76
+ path: reports
diffusers/.github/workflows/pypi_publish.yaml ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://blog.deepjyoti30.dev/pypi-release-github-action
2
+
3
+ name: PyPI release
4
+
5
+ on:
6
+ workflow_dispatch:
7
+ push:
8
+ tags:
9
+ - "*"
10
+
11
+ jobs:
12
+ find-and-checkout-latest-branch:
13
+ runs-on: ubuntu-22.04
14
+ outputs:
15
+ latest_branch: ${{ steps.set_latest_branch.outputs.latest_branch }}
16
+ steps:
17
+ - name: Checkout Repo
18
+ uses: actions/checkout@v3
19
+
20
+ - name: Set up Python
21
+ uses: actions/setup-python@v4
22
+ with:
23
+ python-version: '3.8'
24
+
25
+ - name: Fetch latest branch
26
+ id: fetch_latest_branch
27
+ run: |
28
+ pip install -U requests packaging
29
+ LATEST_BRANCH=$(python utils/fetch_latest_release_branch.py)
30
+ echo "Latest branch: $LATEST_BRANCH"
31
+ echo "latest_branch=$LATEST_BRANCH" >> $GITHUB_ENV
32
+
33
+ - name: Set latest branch output
34
+ id: set_latest_branch
35
+ run: echo "::set-output name=latest_branch::${{ env.latest_branch }}"
36
+
37
+ release:
38
+ needs: find-and-checkout-latest-branch
39
+ runs-on: ubuntu-22.04
40
+
41
+ steps:
42
+ - name: Checkout Repo
43
+ uses: actions/checkout@v3
44
+ with:
45
+ ref: ${{ needs.find-and-checkout-latest-branch.outputs.latest_branch }}
46
+
47
+ - name: Setup Python
48
+ uses: actions/setup-python@v4
49
+ with:
50
+ python-version: "3.8"
51
+
52
+ - name: Install dependencies
53
+ run: |
54
+ python -m pip install --upgrade pip
55
+ pip install -U setuptools wheel twine
56
+ pip install -U torch --index-url https://download.pytorch.org/whl/cpu
57
+ pip install -U transformers
58
+
59
+ - name: Build the dist files
60
+ run: python setup.py bdist_wheel && python setup.py sdist
61
+
62
+ - name: Publish to the test PyPI
63
+ env:
64
+ TWINE_USERNAME: ${{ secrets.TEST_PYPI_USERNAME }}
65
+ TWINE_PASSWORD: ${{ secrets.TEST_PYPI_PASSWORD }}
66
+ run: twine upload dist/* -r pypitest --repository-url=https://test.pypi.org/legacy/
67
+
68
+ - name: Test installing diffusers and importing
69
+ run: |
70
+ pip install diffusers && pip uninstall diffusers -y
71
+ pip install -i https://testpypi.python.org/pypi diffusers
72
+ python -c "from diffusers import __version__; print(__version__)"
73
+ python -c "from diffusers import DiffusionPipeline; pipe = DiffusionPipeline.from_pretrained('fusing/unet-ldm-dummy-update'); pipe()"
74
+ python -c "from diffusers import DiffusionPipeline; pipe = DiffusionPipeline.from_pretrained('hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=None); pipe('ah suh du')"
75
+ python -c "from diffusers import *"
76
+
77
+ - name: Publish to PyPI
78
+ env:
79
+ TWINE_USERNAME: ${{ secrets.PYPI_USERNAME }}
80
+ TWINE_PASSWORD: ${{ secrets.PYPI_PASSWORD }}
81
+ run: twine upload dist/* -r pypi
diffusers/.github/workflows/release_tests_fast.yml ADDED
@@ -0,0 +1,389 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Duplicate workflow to push_tests.yml that is meant to run on release/patch branches as a final check
2
+ # Creating a duplicate workflow here is simpler than adding complex path/branch parsing logic to push_tests.yml
3
+ # Needs to be updated if push_tests.yml updated
4
+ name: (Release) Fast GPU Tests on main
5
+
6
+ on:
7
+ push:
8
+ branches:
9
+ - "v*.*.*-release"
10
+ - "v*.*.*-patch"
11
+
12
+ env:
13
+ DIFFUSERS_IS_CI: yes
14
+ OMP_NUM_THREADS: 8
15
+ MKL_NUM_THREADS: 8
16
+ PYTEST_TIMEOUT: 600
17
+ PIPELINE_USAGE_CUTOFF: 50000
18
+
19
+ jobs:
20
+ setup_torch_cuda_pipeline_matrix:
21
+ name: Setup Torch Pipelines CUDA Slow Tests Matrix
22
+ runs-on:
23
+ group: aws-general-8-plus
24
+ container:
25
+ image: diffusers/diffusers-pytorch-cpu
26
+ outputs:
27
+ pipeline_test_matrix: ${{ steps.fetch_pipeline_matrix.outputs.pipeline_test_matrix }}
28
+ steps:
29
+ - name: Checkout diffusers
30
+ uses: actions/checkout@v3
31
+ with:
32
+ fetch-depth: 2
33
+ - name: Install dependencies
34
+ run: |
35
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
36
+ python -m uv pip install -e [quality,test]
37
+ - name: Environment
38
+ run: |
39
+ python utils/print_env.py
40
+ - name: Fetch Pipeline Matrix
41
+ id: fetch_pipeline_matrix
42
+ run: |
43
+ matrix=$(python utils/fetch_torch_cuda_pipeline_test_matrix.py)
44
+ echo $matrix
45
+ echo "pipeline_test_matrix=$matrix" >> $GITHUB_OUTPUT
46
+ - name: Pipeline Tests Artifacts
47
+ if: ${{ always() }}
48
+ uses: actions/upload-artifact@v4
49
+ with:
50
+ name: test-pipelines.json
51
+ path: reports
52
+
53
+ torch_pipelines_cuda_tests:
54
+ name: Torch Pipelines CUDA Tests
55
+ needs: setup_torch_cuda_pipeline_matrix
56
+ strategy:
57
+ fail-fast: false
58
+ max-parallel: 8
59
+ matrix:
60
+ module: ${{ fromJson(needs.setup_torch_cuda_pipeline_matrix.outputs.pipeline_test_matrix) }}
61
+ runs-on:
62
+ group: aws-g4dn-2xlarge
63
+ container:
64
+ image: diffusers/diffusers-pytorch-cuda
65
+ options: --shm-size "16gb" --ipc host --gpus 0
66
+ steps:
67
+ - name: Checkout diffusers
68
+ uses: actions/checkout@v3
69
+ with:
70
+ fetch-depth: 2
71
+ - name: NVIDIA-SMI
72
+ run: |
73
+ nvidia-smi
74
+ - name: Install dependencies
75
+ run: |
76
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
77
+ python -m uv pip install -e [quality,test]
78
+ pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
79
+ - name: Environment
80
+ run: |
81
+ python utils/print_env.py
82
+ - name: Slow PyTorch CUDA checkpoint tests on Ubuntu
83
+ env:
84
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
85
+ # https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
86
+ CUBLAS_WORKSPACE_CONFIG: :16:8
87
+ run: |
88
+ python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
89
+ -s -v -k "not Flax and not Onnx" \
90
+ --make-reports=tests_pipeline_${{ matrix.module }}_cuda \
91
+ tests/pipelines/${{ matrix.module }}
92
+ - name: Failure short reports
93
+ if: ${{ failure() }}
94
+ run: |
95
+ cat reports/tests_pipeline_${{ matrix.module }}_cuda_stats.txt
96
+ cat reports/tests_pipeline_${{ matrix.module }}_cuda_failures_short.txt
97
+ - name: Test suite reports artifacts
98
+ if: ${{ always() }}
99
+ uses: actions/upload-artifact@v4
100
+ with:
101
+ name: pipeline_${{ matrix.module }}_test_reports
102
+ path: reports
103
+
104
+ torch_cuda_tests:
105
+ name: Torch CUDA Tests
106
+ runs-on:
107
+ group: aws-g4dn-2xlarge
108
+ container:
109
+ image: diffusers/diffusers-pytorch-cuda
110
+ options: --shm-size "16gb" --ipc host --gpus 0
111
+ defaults:
112
+ run:
113
+ shell: bash
114
+ strategy:
115
+ fail-fast: false
116
+ max-parallel: 2
117
+ matrix:
118
+ module: [models, schedulers, lora, others, single_file]
119
+ steps:
120
+ - name: Checkout diffusers
121
+ uses: actions/checkout@v3
122
+ with:
123
+ fetch-depth: 2
124
+
125
+ - name: Install dependencies
126
+ run: |
127
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
128
+ python -m uv pip install -e [quality,test]
129
+ python -m uv pip install peft@git+https://github.com/huggingface/peft.git
130
+ pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
131
+
132
+ - name: Environment
133
+ run: |
134
+ python utils/print_env.py
135
+
136
+ - name: Run PyTorch CUDA tests
137
+ env:
138
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
139
+ # https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
140
+ CUBLAS_WORKSPACE_CONFIG: :16:8
141
+ run: |
142
+ python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
143
+ -s -v -k "not Flax and not Onnx" \
144
+ --make-reports=tests_torch_${{ matrix.module }}_cuda \
145
+ tests/${{ matrix.module }}
146
+
147
+ - name: Failure short reports
148
+ if: ${{ failure() }}
149
+ run: |
150
+ cat reports/tests_torch_${{ matrix.module }}_cuda_stats.txt
151
+ cat reports/tests_torch_${{ matrix.module }}_cuda_failures_short.txt
152
+
153
+ - name: Test suite reports artifacts
154
+ if: ${{ always() }}
155
+ uses: actions/upload-artifact@v4
156
+ with:
157
+ name: torch_cuda_${{ matrix.module }}_test_reports
158
+ path: reports
159
+
160
+ flax_tpu_tests:
161
+ name: Flax TPU Tests
162
+ runs-on: docker-tpu
163
+ container:
164
+ image: diffusers/diffusers-flax-tpu
165
+ options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ --privileged
166
+ defaults:
167
+ run:
168
+ shell: bash
169
+ steps:
170
+ - name: Checkout diffusers
171
+ uses: actions/checkout@v3
172
+ with:
173
+ fetch-depth: 2
174
+
175
+ - name: Install dependencies
176
+ run: |
177
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
178
+ python -m uv pip install -e [quality,test]
179
+ pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
180
+
181
+ - name: Environment
182
+ run: |
183
+ python utils/print_env.py
184
+
185
+ - name: Run slow Flax TPU tests
186
+ env:
187
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
188
+ run: |
189
+ python -m pytest -n 0 \
190
+ -s -v -k "Flax" \
191
+ --make-reports=tests_flax_tpu \
192
+ tests/
193
+
194
+ - name: Failure short reports
195
+ if: ${{ failure() }}
196
+ run: |
197
+ cat reports/tests_flax_tpu_stats.txt
198
+ cat reports/tests_flax_tpu_failures_short.txt
199
+
200
+ - name: Test suite reports artifacts
201
+ if: ${{ always() }}
202
+ uses: actions/upload-artifact@v4
203
+ with:
204
+ name: flax_tpu_test_reports
205
+ path: reports
206
+
207
+ onnx_cuda_tests:
208
+ name: ONNX CUDA Tests
209
+ runs-on:
210
+ group: aws-g4dn-2xlarge
211
+ container:
212
+ image: diffusers/diffusers-onnxruntime-cuda
213
+ options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ --gpus 0
214
+ defaults:
215
+ run:
216
+ shell: bash
217
+ steps:
218
+ - name: Checkout diffusers
219
+ uses: actions/checkout@v3
220
+ with:
221
+ fetch-depth: 2
222
+
223
+ - name: Install dependencies
224
+ run: |
225
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
226
+ python -m uv pip install -e [quality,test]
227
+ pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
228
+
229
+ - name: Environment
230
+ run: |
231
+ python utils/print_env.py
232
+
233
+ - name: Run slow ONNXRuntime CUDA tests
234
+ env:
235
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
236
+ run: |
237
+ python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
238
+ -s -v -k "Onnx" \
239
+ --make-reports=tests_onnx_cuda \
240
+ tests/
241
+
242
+ - name: Failure short reports
243
+ if: ${{ failure() }}
244
+ run: |
245
+ cat reports/tests_onnx_cuda_stats.txt
246
+ cat reports/tests_onnx_cuda_failures_short.txt
247
+
248
+ - name: Test suite reports artifacts
249
+ if: ${{ always() }}
250
+ uses: actions/upload-artifact@v4
251
+ with:
252
+ name: onnx_cuda_test_reports
253
+ path: reports
254
+
255
+ run_torch_compile_tests:
256
+ name: PyTorch Compile CUDA tests
257
+
258
+ runs-on:
259
+ group: aws-g4dn-2xlarge
260
+
261
+ container:
262
+ image: diffusers/diffusers-pytorch-compile-cuda
263
+ options: --gpus 0 --shm-size "16gb" --ipc host
264
+
265
+ steps:
266
+ - name: Checkout diffusers
267
+ uses: actions/checkout@v3
268
+ with:
269
+ fetch-depth: 2
270
+
271
+ - name: NVIDIA-SMI
272
+ run: |
273
+ nvidia-smi
274
+ - name: Install dependencies
275
+ run: |
276
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
277
+ python -m uv pip install -e [quality,test,training]
278
+ - name: Environment
279
+ run: |
280
+ python utils/print_env.py
281
+ - name: Run example tests on GPU
282
+ env:
283
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
284
+ RUN_COMPILE: yes
285
+ run: |
286
+ python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "compile" --make-reports=tests_torch_compile_cuda tests/
287
+ - name: Failure short reports
288
+ if: ${{ failure() }}
289
+ run: cat reports/tests_torch_compile_cuda_failures_short.txt
290
+
291
+ - name: Test suite reports artifacts
292
+ if: ${{ always() }}
293
+ uses: actions/upload-artifact@v4
294
+ with:
295
+ name: torch_compile_test_reports
296
+ path: reports
297
+
298
+ run_xformers_tests:
299
+ name: PyTorch xformers CUDA tests
300
+
301
+ runs-on:
302
+ group: aws-g4dn-2xlarge
303
+
304
+ container:
305
+ image: diffusers/diffusers-pytorch-xformers-cuda
306
+ options: --gpus 0 --shm-size "16gb" --ipc host
307
+
308
+ steps:
309
+ - name: Checkout diffusers
310
+ uses: actions/checkout@v3
311
+ with:
312
+ fetch-depth: 2
313
+
314
+ - name: NVIDIA-SMI
315
+ run: |
316
+ nvidia-smi
317
+ - name: Install dependencies
318
+ run: |
319
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
320
+ python -m uv pip install -e [quality,test,training]
321
+ - name: Environment
322
+ run: |
323
+ python utils/print_env.py
324
+ - name: Run example tests on GPU
325
+ env:
326
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
327
+ run: |
328
+ python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "xformers" --make-reports=tests_torch_xformers_cuda tests/
329
+ - name: Failure short reports
330
+ if: ${{ failure() }}
331
+ run: cat reports/tests_torch_xformers_cuda_failures_short.txt
332
+
333
+ - name: Test suite reports artifacts
334
+ if: ${{ always() }}
335
+ uses: actions/upload-artifact@v4
336
+ with:
337
+ name: torch_xformers_test_reports
338
+ path: reports
339
+
340
+ run_examples_tests:
341
+ name: Examples PyTorch CUDA tests on Ubuntu
342
+
343
+ runs-on:
344
+ group: aws-g4dn-2xlarge
345
+
346
+ container:
347
+ image: diffusers/diffusers-pytorch-cuda
348
+ options: --gpus 0 --shm-size "16gb" --ipc host
349
+
350
+ steps:
351
+ - name: Checkout diffusers
352
+ uses: actions/checkout@v3
353
+ with:
354
+ fetch-depth: 2
355
+
356
+ - name: NVIDIA-SMI
357
+ run: |
358
+ nvidia-smi
359
+
360
+ - name: Install dependencies
361
+ run: |
362
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
363
+ python -m uv pip install -e [quality,test,training]
364
+
365
+ - name: Environment
366
+ run: |
367
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
368
+ python utils/print_env.py
369
+
370
+ - name: Run example tests on GPU
371
+ env:
372
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
373
+ run: |
374
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
375
+ python -m uv pip install timm
376
+ python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v --make-reports=examples_torch_cuda examples/
377
+
378
+ - name: Failure short reports
379
+ if: ${{ failure() }}
380
+ run: |
381
+ cat reports/examples_torch_cuda_stats.txt
382
+ cat reports/examples_torch_cuda_failures_short.txt
383
+
384
+ - name: Test suite reports artifacts
385
+ if: ${{ always() }}
386
+ uses: actions/upload-artifact@v4
387
+ with:
388
+ name: examples_test_reports
389
+ path: reports
diffusers/.github/workflows/run_tests_from_a_pr.yml ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Check running SLOW tests from a PR (only GPU)
2
+
3
+ on:
4
+ workflow_dispatch:
5
+ inputs:
6
+ docker_image:
7
+ default: 'diffusers/diffusers-pytorch-cuda'
8
+ description: 'Name of the Docker image'
9
+ required: true
10
+ branch:
11
+ description: 'PR Branch to test on'
12
+ required: true
13
+ test:
14
+ description: 'Tests to run (e.g.: `tests/models`).'
15
+ required: true
16
+
17
+ env:
18
+ DIFFUSERS_IS_CI: yes
19
+ IS_GITHUB_CI: "1"
20
+ HF_HOME: /mnt/cache
21
+ OMP_NUM_THREADS: 8
22
+ MKL_NUM_THREADS: 8
23
+ PYTEST_TIMEOUT: 600
24
+ RUN_SLOW: yes
25
+
26
+ jobs:
27
+ run_tests:
28
+ name: "Run a test on our runner from a PR"
29
+ runs-on:
30
+ group: aws-g4dn-2xlarge
31
+ container:
32
+ image: ${{ github.event.inputs.docker_image }}
33
+ options: --gpus 0 --privileged --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
34
+
35
+ steps:
36
+ - name: Validate test files input
37
+ id: validate_test_files
38
+ env:
39
+ PY_TEST: ${{ github.event.inputs.test }}
40
+ run: |
41
+ if [[ ! "$PY_TEST" =~ ^tests/ ]]; then
42
+ echo "Error: The input string must start with 'tests/'."
43
+ exit 1
44
+ fi
45
+
46
+ if [[ ! "$PY_TEST" =~ ^tests/(models|pipelines) ]]; then
47
+ echo "Error: The input string must contain either 'models' or 'pipelines' after 'tests/'."
48
+ exit 1
49
+ fi
50
+
51
+ if [[ "$PY_TEST" == *";"* ]]; then
52
+ echo "Error: The input string must not contain ';'."
53
+ exit 1
54
+ fi
55
+ echo "$PY_TEST"
56
+
57
+ - name: Checkout PR branch
58
+ uses: actions/checkout@v4
59
+ with:
60
+ ref: ${{ github.event.inputs.branch }}
61
+ repository: ${{ github.event.pull_request.head.repo.full_name }}
62
+
63
+
64
+ - name: Install pytest
65
+ run: |
66
+ python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
67
+ python -m uv pip install -e [quality,test]
68
+ python -m uv pip install peft
69
+
70
+ - name: Run tests
71
+ env:
72
+ PY_TEST: ${{ github.event.inputs.test }}
73
+ run: |
74
+ pytest "$PY_TEST"
diffusers/.github/workflows/ssh-pr-runner.yml ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: SSH into PR runners
2
+
3
+ on:
4
+ workflow_dispatch:
5
+ inputs:
6
+ docker_image:
7
+ description: 'Name of the Docker image'
8
+ required: true
9
+
10
+ env:
11
+ IS_GITHUB_CI: "1"
12
+ HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
13
+ HF_HOME: /mnt/cache
14
+ DIFFUSERS_IS_CI: yes
15
+ OMP_NUM_THREADS: 8
16
+ MKL_NUM_THREADS: 8
17
+ RUN_SLOW: yes
18
+
19
+ jobs:
20
+ ssh_runner:
21
+ name: "SSH"
22
+ runs-on:
23
+ group: aws-highmemory-32-plus
24
+ container:
25
+ image: ${{ github.event.inputs.docker_image }}
26
+ options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface/diffusers:/mnt/cache/ --privileged
27
+
28
+ steps:
29
+ - name: Checkout diffusers
30
+ uses: actions/checkout@v3
31
+ with:
32
+ fetch-depth: 2
33
+
34
+ - name: Tailscale # In order to be able to SSH when a test fails
35
+ uses: huggingface/tailscale-action@main
36
+ with:
37
+ authkey: ${{ secrets.TAILSCALE_SSH_AUTHKEY }}
38
+ slackChannel: ${{ secrets.SLACK_CIFEEDBACK_CHANNEL }}
39
+ slackToken: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
40
+ waitForSSH: true
diffusers/.github/workflows/ssh-runner.yml ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: SSH into GPU runners
2
+
3
+ on:
4
+ workflow_dispatch:
5
+ inputs:
6
+ runner_type:
7
+ description: 'Type of runner to test (aws-g6-4xlarge-plus: a10 or aws-g4dn-2xlarge: t4)'
8
+ type: choice
9
+ required: true
10
+ options:
11
+ - aws-g6-4xlarge-plus
12
+ - aws-g4dn-2xlarge
13
+ docker_image:
14
+ description: 'Name of the Docker image'
15
+ required: true
16
+
17
+ env:
18
+ IS_GITHUB_CI: "1"
19
+ HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
20
+ HF_HOME: /mnt/cache
21
+ DIFFUSERS_IS_CI: yes
22
+ OMP_NUM_THREADS: 8
23
+ MKL_NUM_THREADS: 8
24
+ RUN_SLOW: yes
25
+
26
+ jobs:
27
+ ssh_runner:
28
+ name: "SSH"
29
+ runs-on:
30
+ group: "${{ github.event.inputs.runner_type }}"
31
+ container:
32
+ image: ${{ github.event.inputs.docker_image }}
33
+ options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface/diffusers:/mnt/cache/ --gpus 0 --privileged
34
+
35
+ steps:
36
+ - name: Checkout diffusers
37
+ uses: actions/checkout@v3
38
+ with:
39
+ fetch-depth: 2
40
+
41
+ - name: NVIDIA-SMI
42
+ run: |
43
+ nvidia-smi
44
+
45
+ - name: Tailscale # In order to be able to SSH when a test fails
46
+ uses: huggingface/tailscale-action@main
47
+ with:
48
+ authkey: ${{ secrets.TAILSCALE_SSH_AUTHKEY }}
49
+ slackChannel: ${{ secrets.SLACK_CIFEEDBACK_CHANNEL }}
50
+ slackToken: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
51
+ waitForSSH: true
diffusers/.github/workflows/stale.yml ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Stale Bot
2
+
3
+ on:
4
+ schedule:
5
+ - cron: "0 15 * * *"
6
+
7
+ jobs:
8
+ close_stale_issues:
9
+ name: Close Stale Issues
10
+ if: github.repository == 'huggingface/diffusers'
11
+ runs-on: ubuntu-22.04
12
+ permissions:
13
+ issues: write
14
+ pull-requests: write
15
+ env:
16
+ GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
17
+ steps:
18
+ - uses: actions/checkout@v2
19
+
20
+ - name: Setup Python
21
+ uses: actions/setup-python@v1
22
+ with:
23
+ python-version: 3.8
24
+
25
+ - name: Install requirements
26
+ run: |
27
+ pip install PyGithub
28
+ - name: Close stale issues
29
+ run: |
30
+ python utils/stale.py
diffusers/.github/workflows/trufflehog.yml ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ on:
2
+ push:
3
+
4
+ name: Secret Leaks
5
+
6
+ jobs:
7
+ trufflehog:
8
+ runs-on: ubuntu-22.04
9
+ steps:
10
+ - name: Checkout code
11
+ uses: actions/checkout@v4
12
+ with:
13
+ fetch-depth: 0
14
+ - name: Secret Scanning
15
+ uses: trufflesecurity/trufflehog@main
diffusers/.github/workflows/typos.yml ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Check typos
2
+
3
+ on:
4
+ workflow_dispatch:
5
+
6
+ jobs:
7
+ build:
8
+ runs-on: ubuntu-22.04
9
+
10
+ steps:
11
+ - uses: actions/checkout@v3
12
+
13
+ - name: typos-action
14
+ uses: crate-ci/[email protected]
diffusers/.github/workflows/update_metadata.yml ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Update Diffusers metadata
2
+
3
+ on:
4
+ workflow_dispatch:
5
+ push:
6
+ branches:
7
+ - main
8
+ - update_diffusers_metadata*
9
+
10
+ jobs:
11
+ update_metadata:
12
+ runs-on: ubuntu-22.04
13
+ defaults:
14
+ run:
15
+ shell: bash -l {0}
16
+
17
+ steps:
18
+ - uses: actions/checkout@v3
19
+
20
+ - name: Setup environment
21
+ run: |
22
+ pip install --upgrade pip
23
+ pip install datasets pandas
24
+ pip install .[torch]
25
+
26
+ - name: Update metadata
27
+ env:
28
+ HF_TOKEN: ${{ secrets.SAYAK_HF_TOKEN }}
29
+ run: |
30
+ python utils/update_metadata.py --commit_sha ${{ github.sha }}
diffusers/.github/workflows/upload_pr_documentation.yml ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Upload PR Documentation
2
+
3
+ on:
4
+ workflow_run:
5
+ workflows: ["Build PR Documentation"]
6
+ types:
7
+ - completed
8
+
9
+ jobs:
10
+ build:
11
+ uses: huggingface/doc-builder/.github/workflows/upload_pr_documentation.yml@main
12
+ with:
13
+ package_name: diffusers
14
+ secrets:
15
+ hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}
16
+ comment_bot_token: ${{ secrets.COMMENT_BOT_TOKEN }}
diffusers/.gitignore ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Initially taken from GitHub's Python gitignore file
2
+
3
+ # Byte-compiled / optimized / DLL files
4
+ __pycache__/
5
+ *.py[cod]
6
+ *$py.class
7
+
8
+ # C extensions
9
+ *.so
10
+
11
+ # tests and logs
12
+ tests/fixtures/cached_*_text.txt
13
+ logs/
14
+ lightning_logs/
15
+ lang_code_data/
16
+
17
+ # Distribution / packaging
18
+ .Python
19
+ build/
20
+ develop-eggs/
21
+ dist/
22
+ downloads/
23
+ eggs/
24
+ .eggs/
25
+ lib/
26
+ lib64/
27
+ parts/
28
+ sdist/
29
+ var/
30
+ wheels/
31
+ *.egg-info/
32
+ .installed.cfg
33
+ *.egg
34
+ MANIFEST
35
+
36
+ # PyInstaller
37
+ # Usually these files are written by a Python script from a template
38
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
39
+ *.manifest
40
+ *.spec
41
+
42
+ # Installer logs
43
+ pip-log.txt
44
+ pip-delete-this-directory.txt
45
+
46
+ # Unit test / coverage reports
47
+ htmlcov/
48
+ .tox/
49
+ .nox/
50
+ .coverage
51
+ .coverage.*
52
+ .cache
53
+ nosetests.xml
54
+ coverage.xml
55
+ *.cover
56
+ .hypothesis/
57
+ .pytest_cache/
58
+
59
+ # Translations
60
+ *.mo
61
+ *.pot
62
+
63
+ # Django stuff:
64
+ *.log
65
+ local_settings.py
66
+ db.sqlite3
67
+
68
+ # Flask stuff:
69
+ instance/
70
+ .webassets-cache
71
+
72
+ # Scrapy stuff:
73
+ .scrapy
74
+
75
+ # Sphinx documentation
76
+ docs/_build/
77
+
78
+ # PyBuilder
79
+ target/
80
+
81
+ # Jupyter Notebook
82
+ .ipynb_checkpoints
83
+
84
+ # IPython
85
+ profile_default/
86
+ ipython_config.py
87
+
88
+ # pyenv
89
+ .python-version
90
+
91
+ # celery beat schedule file
92
+ celerybeat-schedule
93
+
94
+ # SageMath parsed files
95
+ *.sage.py
96
+
97
+ # Environments
98
+ .env
99
+ .venv
100
+ env/
101
+ venv/
102
+ ENV/
103
+ env.bak/
104
+ venv.bak/
105
+
106
+ # Spyder project settings
107
+ .spyderproject
108
+ .spyproject
109
+
110
+ # Rope project settings
111
+ .ropeproject
112
+
113
+ # mkdocs documentation
114
+ /site
115
+
116
+ # mypy
117
+ .mypy_cache/
118
+ .dmypy.json
119
+ dmypy.json
120
+
121
+ # Pyre type checker
122
+ .pyre/
123
+
124
+ # vscode
125
+ .vs
126
+ .vscode
127
+
128
+ # Pycharm
129
+ .idea
130
+
131
+ # TF code
132
+ tensorflow_code
133
+
134
+ # Models
135
+ proc_data
136
+
137
+ # examples
138
+ runs
139
+ /runs_old
140
+ /wandb
141
+ /examples/runs
142
+ /examples/**/*.args
143
+ /examples/rag/sweep
144
+
145
+ # data
146
+ /data
147
+ serialization_dir
148
+
149
+ # emacs
150
+ *.*~
151
+ debug.env
152
+
153
+ # vim
154
+ .*.swp
155
+
156
+ # ctags
157
+ tags
158
+
159
+ # pre-commit
160
+ .pre-commit*
161
+
162
+ # .lock
163
+ *.lock
164
+
165
+ # DS_Store (MacOS)
166
+ .DS_Store
167
+
168
+ # RL pipelines may produce mp4 outputs
169
+ *.mp4
170
+
171
+ # dependencies
172
+ /transformers
173
+
174
+ # ruff
175
+ .ruff_cache
176
+
177
+ # wandb
178
+ wandb
diffusers/CITATION.cff ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ cff-version: 1.2.0
2
+ title: 'Diffusers: State-of-the-art diffusion models'
3
+ message: >-
4
+ If you use this software, please cite it using the
5
+ metadata from this file.
6
+ type: software
7
+ authors:
8
+ - given-names: Patrick
9
+ family-names: von Platen
10
+ - given-names: Suraj
11
+ family-names: Patil
12
+ - given-names: Anton
13
+ family-names: Lozhkov
14
+ - given-names: Pedro
15
+ family-names: Cuenca
16
+ - given-names: Nathan
17
+ family-names: Lambert
18
+ - given-names: Kashif
19
+ family-names: Rasul
20
+ - given-names: Mishig
21
+ family-names: Davaadorj
22
+ - given-names: Dhruv
23
+ family-names: Nair
24
+ - given-names: Sayak
25
+ family-names: Paul
26
+ - given-names: Steven
27
+ family-names: Liu
28
+ - given-names: William
29
+ family-names: Berman
30
+ - given-names: Yiyi
31
+ family-names: Xu
32
+ - given-names: Thomas
33
+ family-names: Wolf
34
+ repository-code: 'https://github.com/huggingface/diffusers'
35
+ abstract: >-
36
+ Diffusers provides pretrained diffusion models across
37
+ multiple modalities, such as vision and audio, and serves
38
+ as a modular toolbox for inference and training of
39
+ diffusion models.
40
+ keywords:
41
+ - deep-learning
42
+ - pytorch
43
+ - image-generation
44
+ - hacktoberfest
45
+ - diffusion
46
+ - text2image
47
+ - image2image
48
+ - score-based-generative-modeling
49
+ - stable-diffusion
50
+ - stable-diffusion-diffusers
51
+ license: Apache-2.0
52
+ version: 0.12.1
diffusers/CODE_OF_CONDUCT.md ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # Contributor Covenant Code of Conduct
3
+
4
+ ## Our Pledge
5
+
6
+ We as members, contributors, and leaders pledge to make participation in our
7
+ community a harassment-free experience for everyone, regardless of age, body
8
+ size, visible or invisible disability, ethnicity, sex characteristics, gender
9
+ identity and expression, level of experience, education, socio-economic status,
10
+ nationality, personal appearance, race, caste, color, religion, or sexual identity
11
+ and orientation.
12
+
13
+ We pledge to act and interact in ways that contribute to an open, welcoming,
14
+ diverse, inclusive, and healthy community.
15
+
16
+ ## Our Standards
17
+
18
+ Examples of behavior that contributes to a positive environment for our
19
+ community include:
20
+
21
+ * Demonstrating empathy and kindness toward other people
22
+ * Being respectful of differing opinions, viewpoints, and experiences
23
+ * Giving and gracefully accepting constructive feedback
24
+ * Accepting responsibility and apologizing to those affected by our mistakes,
25
+ and learning from the experience
26
+ * Focusing on what is best not just for us as individuals, but for the
27
+ overall Diffusers community
28
+
29
+ Examples of unacceptable behavior include:
30
+
31
+ * The use of sexualized language or imagery, and sexual attention or
32
+ advances of any kind
33
+ * Trolling, insulting or derogatory comments, and personal or political attacks
34
+ * Public or private harassment
35
+ * Publishing others' private information, such as a physical or email
36
+ address, without their explicit permission
37
+ * Spamming issues or PRs with links to projects unrelated to this library
38
+ * Other conduct which could reasonably be considered inappropriate in a
39
+ professional setting
40
+
41
+ ## Enforcement Responsibilities
42
+
43
+ Community leaders are responsible for clarifying and enforcing our standards of
44
+ acceptable behavior and will take appropriate and fair corrective action in
45
+ response to any behavior that they deem inappropriate, threatening, offensive,
46
+ or harmful.
47
+
48
+ Community leaders have the right and responsibility to remove, edit, or reject
49
+ comments, commits, code, wiki edits, issues, and other contributions that are
50
+ not aligned to this Code of Conduct, and will communicate reasons for moderation
51
+ decisions when appropriate.
52
+
53
+ ## Scope
54
+
55
+ This Code of Conduct applies within all community spaces, and also applies when
56
+ an individual is officially representing the community in public spaces.
57
+ Examples of representing our community include using an official e-mail address,
58
+ posting via an official social media account, or acting as an appointed
59
+ representative at an online or offline event.
60
+
61
+ ## Enforcement
62
+
63
+ Instances of abusive, harassing, or otherwise unacceptable behavior may be
64
+ reported to the community leaders responsible for enforcement at
65
66
+ All complaints will be reviewed and investigated promptly and fairly.
67
+
68
+ All community leaders are obligated to respect the privacy and security of the
69
+ reporter of any incident.
70
+
71
+ ## Enforcement Guidelines
72
+
73
+ Community leaders will follow these Community Impact Guidelines in determining
74
+ the consequences for any action they deem in violation of this Code of Conduct:
75
+
76
+ ### 1. Correction
77
+
78
+ **Community Impact**: Use of inappropriate language or other behavior deemed
79
+ unprofessional or unwelcome in the community.
80
+
81
+ **Consequence**: A private, written warning from community leaders, providing
82
+ clarity around the nature of the violation and an explanation of why the
83
+ behavior was inappropriate. A public apology may be requested.
84
+
85
+ ### 2. Warning
86
+
87
+ **Community Impact**: A violation through a single incident or series
88
+ of actions.
89
+
90
+ **Consequence**: A warning with consequences for continued behavior. No
91
+ interaction with the people involved, including unsolicited interaction with
92
+ those enforcing the Code of Conduct, for a specified period of time. This
93
+ includes avoiding interactions in community spaces as well as external channels
94
+ like social media. Violating these terms may lead to a temporary or
95
+ permanent ban.
96
+
97
+ ### 3. Temporary Ban
98
+
99
+ **Community Impact**: A serious violation of community standards, including
100
+ sustained inappropriate behavior.
101
+
102
+ **Consequence**: A temporary ban from any sort of interaction or public
103
+ communication with the community for a specified period of time. No public or
104
+ private interaction with the people involved, including unsolicited interaction
105
+ with those enforcing the Code of Conduct, is allowed during this period.
106
+ Violating these terms may lead to a permanent ban.
107
+
108
+ ### 4. Permanent Ban
109
+
110
+ **Community Impact**: Demonstrating a pattern of violation of community
111
+ standards, including sustained inappropriate behavior, harassment of an
112
+ individual, or aggression toward or disparagement of classes of individuals.
113
+
114
+ **Consequence**: A permanent ban from any sort of public interaction within
115
+ the community.
116
+
117
+ ## Attribution
118
+
119
+ This Code of Conduct is adapted from the [Contributor Covenant][homepage],
120
+ version 2.1, available at
121
+ https://www.contributor-covenant.org/version/2/1/code_of_conduct.html.
122
+
123
+ Community Impact Guidelines were inspired by [Mozilla's code of conduct
124
+ enforcement ladder](https://github.com/mozilla/diversity).
125
+
126
+ [homepage]: https://www.contributor-covenant.org
127
+
128
+ For answers to common questions about this code of conduct, see the FAQ at
129
+ https://www.contributor-covenant.org/faq. Translations are available at
130
+ https://www.contributor-covenant.org/translations.
diffusers/CONTRIBUTING.md ADDED
@@ -0,0 +1,506 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!--Copyright 2024 The HuggingFace Team. All rights reserved.
2
+
3
+ Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
4
+ the License. You may obtain a copy of the License at
5
+
6
+ http://www.apache.org/licenses/LICENSE-2.0
7
+
8
+ Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
9
+ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
10
+ specific language governing permissions and limitations under the License.
11
+ -->
12
+
13
+ # How to contribute to Diffusers 🧨
14
+
15
+ We ❤️ contributions from the open-source community! Everyone is welcome, and all types of participation –not just code– are valued and appreciated. Answering questions, helping others, reaching out, and improving the documentation are all immensely valuable to the community, so don't be afraid and get involved if you're up for it!
16
+
17
+ Everyone is encouraged to start by saying 👋 in our public Discord channel. We discuss the latest trends in diffusion models, ask questions, show off personal projects, help each other with contributions, or just hang out ☕. <a href="https://discord.gg/G7tWnz98XR"><img alt="Join us on Discord" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=Discord&logoColor=white"></a>
18
+
19
+ Whichever way you choose to contribute, we strive to be part of an open, welcoming, and kind community. Please, read our [code of conduct](https://github.com/huggingface/diffusers/blob/main/CODE_OF_CONDUCT.md) and be mindful to respect it during your interactions. We also recommend you become familiar with the [ethical guidelines](https://huggingface.co/docs/diffusers/conceptual/ethical_guidelines) that guide our project and ask you to adhere to the same principles of transparency and responsibility.
20
+
21
+ We enormously value feedback from the community, so please do not be afraid to speak up if you believe you have valuable feedback that can help improve the library - every message, comment, issue, and pull request (PR) is read and considered.
22
+
23
+ ## Overview
24
+
25
+ You can contribute in many ways ranging from answering questions on issues to adding new diffusion models to
26
+ the core library.
27
+
28
+ In the following, we give an overview of different ways to contribute, ranked by difficulty in ascending order. All of them are valuable to the community.
29
+
30
+ * 1. Asking and answering questions on [the Diffusers discussion forum](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers) or on [Discord](https://discord.gg/G7tWnz98XR).
31
+ * 2. Opening new issues on [the GitHub Issues tab](https://github.com/huggingface/diffusers/issues/new/choose).
32
+ * 3. Answering issues on [the GitHub Issues tab](https://github.com/huggingface/diffusers/issues).
33
+ * 4. Fix a simple issue, marked by the "Good first issue" label, see [here](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22).
34
+ * 5. Contribute to the [documentation](https://github.com/huggingface/diffusers/tree/main/docs/source).
35
+ * 6. Contribute a [Community Pipeline](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3Acommunity-examples).
36
+ * 7. Contribute to the [examples](https://github.com/huggingface/diffusers/tree/main/examples).
37
+ * 8. Fix a more difficult issue, marked by the "Good second issue" label, see [here](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22Good+second+issue%22).
38
+ * 9. Add a new pipeline, model, or scheduler, see ["New Pipeline/Model"](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+pipeline%2Fmodel%22) and ["New scheduler"](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+scheduler%22) issues. For this contribution, please have a look at [Design Philosophy](https://github.com/huggingface/diffusers/blob/main/PHILOSOPHY.md).
39
+
40
+ As said before, **all contributions are valuable to the community**.
41
+ In the following, we will explain each contribution a bit more in detail.
42
+
43
+ For all contributions 4-9, you will need to open a PR. It is explained in detail how to do so in [Opening a pull request](#how-to-open-a-pr).
44
+
45
+ ### 1. Asking and answering questions on the Diffusers discussion forum or on the Diffusers Discord
46
+
47
+ Any question or comment related to the Diffusers library can be asked on the [discussion forum](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/) or on [Discord](https://discord.gg/G7tWnz98XR). Such questions and comments include (but are not limited to):
48
+ - Reports of training or inference experiments in an attempt to share knowledge
49
+ - Presentation of personal projects
50
+ - Questions to non-official training examples
51
+ - Project proposals
52
+ - General feedback
53
+ - Paper summaries
54
+ - Asking for help on personal projects that build on top of the Diffusers library
55
+ - General questions
56
+ - Ethical questions regarding diffusion models
57
+ - ...
58
+
59
+ Every question that is asked on the forum or on Discord actively encourages the community to publicly
60
+ share knowledge and might very well help a beginner in the future who has the same question you're
61
+ having. Please do pose any questions you might have.
62
+ In the same spirit, you are of immense help to the community by answering such questions because this way you are publicly documenting knowledge for everybody to learn from.
63
+
64
+ **Please** keep in mind that the more effort you put into asking or answering a question, the higher
65
+ the quality of the publicly documented knowledge. In the same way, well-posed and well-answered questions create a high-quality knowledge database accessible to everybody, while badly posed questions or answers reduce the overall quality of the public knowledge database.
66
+ In short, a high quality question or answer is *precise*, *concise*, *relevant*, *easy-to-understand*, *accessible*, and *well-formatted/well-posed*. For more information, please have a look through the [How to write a good issue](#how-to-write-a-good-issue) section.
67
+
68
+ **NOTE about channels**:
69
+ [*The forum*](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63) is much better indexed by search engines, such as Google. Posts are ranked by popularity rather than chronologically. Hence, it's easier to look up questions and answers that we posted some time ago.
70
+ In addition, questions and answers posted in the forum can easily be linked to.
71
+ In contrast, *Discord* has a chat-like format that invites fast back-and-forth communication.
72
+ While it will most likely take less time for you to get an answer to your question on Discord, your
73
+ question won't be visible anymore over time. Also, it's much harder to find information that was posted a while back on Discord. We therefore strongly recommend using the forum for high-quality questions and answers in an attempt to create long-lasting knowledge for the community. If discussions on Discord lead to very interesting answers and conclusions, we recommend posting the results on the forum to make the information more available for future readers.
74
+
75
+ ### 2. Opening new issues on the GitHub issues tab
76
+
77
+ The 🧨 Diffusers library is robust and reliable thanks to the users who notify us of
78
+ the problems they encounter. So thank you for reporting an issue.
79
+
80
+ Remember, GitHub issues are reserved for technical questions directly related to the Diffusers library, bug reports, feature requests, or feedback on the library design.
81
+
82
+ In a nutshell, this means that everything that is **not** related to the **code of the Diffusers library** (including the documentation) should **not** be asked on GitHub, but rather on either the [forum](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63) or [Discord](https://discord.gg/G7tWnz98XR).
83
+
84
+ **Please consider the following guidelines when opening a new issue**:
85
+ - Make sure you have searched whether your issue has already been asked before (use the search bar on GitHub under Issues).
86
+ - Please never report a new issue on another (related) issue. If another issue is highly related, please
87
+ open a new issue nevertheless and link to the related issue.
88
+ - Make sure your issue is written in English. Please use one of the great, free online translation services, such as [DeepL](https://www.deepl.com/translator) to translate from your native language to English if you are not comfortable in English.
89
+ - Check whether your issue might be solved by updating to the newest Diffusers version. Before posting your issue, please make sure that `python -c "import diffusers; print(diffusers.__version__)"` is higher or matches the latest Diffusers version.
90
+ - Remember that the more effort you put into opening a new issue, the higher the quality of your answer will be and the better the overall quality of the Diffusers issues.
91
+
92
+ New issues usually include the following.
93
+
94
+ #### 2.1. Reproducible, minimal bug reports
95
+
96
+ A bug report should always have a reproducible code snippet and be as minimal and concise as possible.
97
+ This means in more detail:
98
+ - Narrow the bug down as much as you can, **do not just dump your whole code file**.
99
+ - Format your code.
100
+ - Do not include any external libraries except for Diffusers depending on them.
101
+ - **Always** provide all necessary information about your environment; for this, you can run: `diffusers-cli env` in your shell and copy-paste the displayed information to the issue.
102
+ - Explain the issue. If the reader doesn't know what the issue is and why it is an issue, she cannot solve it.
103
+ - **Always** make sure the reader can reproduce your issue with as little effort as possible. If your code snippet cannot be run because of missing libraries or undefined variables, the reader cannot help you. Make sure your reproducible code snippet is as minimal as possible and can be copy-pasted into a simple Python shell.
104
+ - If in order to reproduce your issue a model and/or dataset is required, make sure the reader has access to that model or dataset. You can always upload your model or dataset to the [Hub](https://huggingface.co) to make it easily downloadable. Try to keep your model and dataset as small as possible, to make the reproduction of your issue as effortless as possible.
105
+
106
+ For more information, please have a look through the [How to write a good issue](#how-to-write-a-good-issue) section.
107
+
108
+ You can open a bug report [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=bug&projects=&template=bug-report.yml).
109
+
110
+ #### 2.2. Feature requests
111
+
112
+ A world-class feature request addresses the following points:
113
+
114
+ 1. Motivation first:
115
+ * Is it related to a problem/frustration with the library? If so, please explain
116
+ why. Providing a code snippet that demonstrates the problem is best.
117
+ * Is it related to something you would need for a project? We'd love to hear
118
+ about it!
119
+ * Is it something you worked on and think could benefit the community?
120
+ Awesome! Tell us what problem it solved for you.
121
+ 2. Write a *full paragraph* describing the feature;
122
+ 3. Provide a **code snippet** that demonstrates its future use;
123
+ 4. In case this is related to a paper, please attach a link;
124
+ 5. Attach any additional information (drawings, screenshots, etc.) you think may help.
125
+
126
+ You can open a feature request [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feature_request.md&title=).
127
+
128
+ #### 2.3 Feedback
129
+
130
+ Feedback about the library design and why it is good or not good helps the core maintainers immensely to build a user-friendly library. To understand the philosophy behind the current design philosophy, please have a look [here](https://huggingface.co/docs/diffusers/conceptual/philosophy). If you feel like a certain design choice does not fit with the current design philosophy, please explain why and how it should be changed. If a certain design choice follows the design philosophy too much, hence restricting use cases, explain why and how it should be changed.
131
+ If a certain design choice is very useful for you, please also leave a note as this is great feedback for future design decisions.
132
+
133
+ You can open an issue about feedback [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feedback.md&title=).
134
+
135
+ #### 2.4 Technical questions
136
+
137
+ Technical questions are mainly about why certain code of the library was written in a certain way, or what a certain part of the code does. Please make sure to link to the code in question and please provide detail on
138
+ why this part of the code is difficult to understand.
139
+
140
+ You can open an issue about a technical question [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=bug&template=bug-report.yml).
141
+
142
+ #### 2.5 Proposal to add a new model, scheduler, or pipeline
143
+
144
+ If the diffusion model community released a new model, pipeline, or scheduler that you would like to see in the Diffusers library, please provide the following information:
145
+
146
+ * Short description of the diffusion pipeline, model, or scheduler and link to the paper or public release.
147
+ * Link to any of its open-source implementation.
148
+ * Link to the model weights if they are available.
149
+
150
+ If you are willing to contribute to the model yourself, let us know so we can best guide you. Also, don't forget
151
+ to tag the original author of the component (model, scheduler, pipeline, etc.) by GitHub handle if you can find it.
152
+
153
+ You can open a request for a model/pipeline/scheduler [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=New+model%2Fpipeline%2Fscheduler&template=new-model-addition.yml).
154
+
155
+ ### 3. Answering issues on the GitHub issues tab
156
+
157
+ Answering issues on GitHub might require some technical knowledge of Diffusers, but we encourage everybody to give it a try even if you are not 100% certain that your answer is correct.
158
+ Some tips to give a high-quality answer to an issue:
159
+ - Be as concise and minimal as possible.
160
+ - Stay on topic. An answer to the issue should concern the issue and only the issue.
161
+ - Provide links to code, papers, or other sources that prove or encourage your point.
162
+ - Answer in code. If a simple code snippet is the answer to the issue or shows how the issue can be solved, please provide a fully reproducible code snippet.
163
+
164
+ Also, many issues tend to be simply off-topic, duplicates of other issues, or irrelevant. It is of great
165
+ help to the maintainers if you can answer such issues, encouraging the author of the issue to be
166
+ more precise, provide the link to a duplicated issue or redirect them to [the forum](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63) or [Discord](https://discord.gg/G7tWnz98XR).
167
+
168
+ If you have verified that the issued bug report is correct and requires a correction in the source code,
169
+ please have a look at the next sections.
170
+
171
+ For all of the following contributions, you will need to open a PR. It is explained in detail how to do so in the [Opening a pull request](#how-to-open-a-pr) section.
172
+
173
+ ### 4. Fixing a "Good first issue"
174
+
175
+ *Good first issues* are marked by the [Good first issue](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22) label. Usually, the issue already
176
+ explains how a potential solution should look so that it is easier to fix.
177
+ If the issue hasn't been closed and you would like to try to fix this issue, you can just leave a message "I would like to try this issue.". There are usually three scenarios:
178
+ - a.) The issue description already proposes a fix. In this case and if the solution makes sense to you, you can open a PR or draft PR to fix it.
179
+ - b.) The issue description does not propose a fix. In this case, you can ask what a proposed fix could look like and someone from the Diffusers team should answer shortly. If you have a good idea of how to fix it, feel free to directly open a PR.
180
+ - c.) There is already an open PR to fix the issue, but the issue hasn't been closed yet. If the PR has gone stale, you can simply open a new PR and link to the stale PR. PRs often go stale if the original contributor who wanted to fix the issue suddenly cannot find the time anymore to proceed. This often happens in open-source and is very normal. In this case, the community will be very happy if you give it a new try and leverage the knowledge of the existing PR. If there is already a PR and it is active, you can help the author by giving suggestions, reviewing the PR or even asking whether you can contribute to the PR.
181
+
182
+
183
+ ### 5. Contribute to the documentation
184
+
185
+ A good library **always** has good documentation! The official documentation is often one of the first points of contact for new users of the library, and therefore contributing to the documentation is a **highly
186
+ valuable contribution**.
187
+
188
+ Contributing to the library can have many forms:
189
+
190
+ - Correcting spelling or grammatical errors.
191
+ - Correct incorrect formatting of the docstring. If you see that the official documentation is weirdly displayed or a link is broken, we are very happy if you take some time to correct it.
192
+ - Correct the shape or dimensions of a docstring input or output tensor.
193
+ - Clarify documentation that is hard to understand or incorrect.
194
+ - Update outdated code examples.
195
+ - Translating the documentation to another language.
196
+
197
+ Anything displayed on [the official Diffusers doc page](https://huggingface.co/docs/diffusers/index) is part of the official documentation and can be corrected, adjusted in the respective [documentation source](https://github.com/huggingface/diffusers/tree/main/docs/source).
198
+
199
+ Please have a look at [this page](https://github.com/huggingface/diffusers/tree/main/docs) on how to verify changes made to the documentation locally.
200
+
201
+
202
+ ### 6. Contribute a community pipeline
203
+
204
+ [Pipelines](https://huggingface.co/docs/diffusers/api/pipelines/overview) are usually the first point of contact between the Diffusers library and the user.
205
+ Pipelines are examples of how to use Diffusers [models](https://huggingface.co/docs/diffusers/api/models/overview) and [schedulers](https://huggingface.co/docs/diffusers/api/schedulers/overview).
206
+ We support two types of pipelines:
207
+
208
+ - Official Pipelines
209
+ - Community Pipelines
210
+
211
+ Both official and community pipelines follow the same design and consist of the same type of components.
212
+
213
+ Official pipelines are tested and maintained by the core maintainers of Diffusers. Their code
214
+ resides in [src/diffusers/pipelines](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines).
215
+ In contrast, community pipelines are contributed and maintained purely by the **community** and are **not** tested.
216
+ They reside in [examples/community](https://github.com/huggingface/diffusers/tree/main/examples/community) and while they can be accessed via the [PyPI diffusers package](https://pypi.org/project/diffusers/), their code is not part of the PyPI distribution.
217
+
218
+ The reason for the distinction is that the core maintainers of the Diffusers library cannot maintain and test all
219
+ possible ways diffusion models can be used for inference, but some of them may be of interest to the community.
220
+ Officially released diffusion pipelines,
221
+ such as Stable Diffusion are added to the core src/diffusers/pipelines package which ensures
222
+ high quality of maintenance, no backward-breaking code changes, and testing.
223
+ More bleeding edge pipelines should be added as community pipelines. If usage for a community pipeline is high, the pipeline can be moved to the official pipelines upon request from the community. This is one of the ways we strive to be a community-driven library.
224
+
225
+ To add a community pipeline, one should add a <name-of-the-community>.py file to [examples/community](https://github.com/huggingface/diffusers/tree/main/examples/community) and adapt the [examples/community/README.md](https://github.com/huggingface/diffusers/tree/main/examples/community/README.md) to include an example of the new pipeline.
226
+
227
+ An example can be seen [here](https://github.com/huggingface/diffusers/pull/2400).
228
+
229
+ Community pipeline PRs are only checked at a superficial level and ideally they should be maintained by their original authors.
230
+
231
+ Contributing a community pipeline is a great way to understand how Diffusers models and schedulers work. Having contributed a community pipeline is usually the first stepping stone to contributing an official pipeline to the
232
+ core package.
233
+
234
+ ### 7. Contribute to training examples
235
+
236
+ Diffusers examples are a collection of training scripts that reside in [examples](https://github.com/huggingface/diffusers/tree/main/examples).
237
+
238
+ We support two types of training examples:
239
+
240
+ - Official training examples
241
+ - Research training examples
242
+
243
+ Research training examples are located in [examples/research_projects](https://github.com/huggingface/diffusers/tree/main/examples/research_projects) whereas official training examples include all folders under [examples](https://github.com/huggingface/diffusers/tree/main/examples) except the `research_projects` and `community` folders.
244
+ The official training examples are maintained by the Diffusers' core maintainers whereas the research training examples are maintained by the community.
245
+ This is because of the same reasons put forward in [6. Contribute a community pipeline](#6-contribute-a-community-pipeline) for official pipelines vs. community pipelines: It is not feasible for the core maintainers to maintain all possible training methods for diffusion models.
246
+ If the Diffusers core maintainers and the community consider a certain training paradigm to be too experimental or not popular enough, the corresponding training code should be put in the `research_projects` folder and maintained by the author.
247
+
248
+ Both official training and research examples consist of a directory that contains one or more training scripts, a `requirements.txt` file, and a `README.md` file. In order for the user to make use of the
249
+ training examples, it is required to clone the repository:
250
+
251
+ ```bash
252
+ git clone https://github.com/huggingface/diffusers
253
+ ```
254
+
255
+ as well as to install all additional dependencies required for training:
256
+
257
+ ```bash
258
+ cd diffusers
259
+ pip install -r examples/<your-example-folder>/requirements.txt
260
+ ```
261
+
262
+ Therefore when adding an example, the `requirements.txt` file shall define all pip dependencies required for your training example so that once all those are installed, the user can run the example's training script. See, for example, the [DreamBooth `requirements.txt` file](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/requirements.txt).
263
+
264
+ Training examples of the Diffusers library should adhere to the following philosophy:
265
+ - All the code necessary to run the examples should be found in a single Python file.
266
+ - One should be able to run the example from the command line with `python <your-example>.py --args`.
267
+ - Examples should be kept simple and serve as **an example** on how to use Diffusers for training. The purpose of example scripts is **not** to create state-of-the-art diffusion models, but rather to reproduce known training schemes without adding too much custom logic. As a byproduct of this point, our examples also strive to serve as good educational materials.
268
+
269
+ To contribute an example, it is highly recommended to look at already existing examples such as [dreambooth](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth.py) to get an idea of how they should look like.
270
+ We strongly advise contributors to make use of the [Accelerate library](https://github.com/huggingface/accelerate) as it's tightly integrated
271
+ with Diffusers.
272
+ Once an example script works, please make sure to add a comprehensive `README.md` that states how to use the example exactly. This README should include:
273
+ - An example command on how to run the example script as shown [here e.g.](https://github.com/huggingface/diffusers/tree/main/examples/dreambooth#running-locally-with-pytorch).
274
+ - A link to some training results (logs, models, ...) that show what the user can expect as shown [here e.g.](https://api.wandb.ai/report/patrickvonplaten/xm6cd5q5).
275
+ - If you are adding a non-official/research training example, **please don't forget** to add a sentence that you are maintaining this training example which includes your git handle as shown [here](https://github.com/huggingface/diffusers/tree/main/examples/research_projects/intel_opts#diffusers-examples-with-intel-optimizations).
276
+
277
+ If you are contributing to the official training examples, please also make sure to add a test to [examples/test_examples.py](https://github.com/huggingface/diffusers/blob/main/examples/test_examples.py). This is not necessary for non-official training examples.
278
+
279
+ ### 8. Fixing a "Good second issue"
280
+
281
+ *Good second issues* are marked by the [Good second issue](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22Good+second+issue%22) label. Good second issues are
282
+ usually more complicated to solve than [Good first issues](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22).
283
+ The issue description usually gives less guidance on how to fix the issue and requires
284
+ a decent understanding of the library by the interested contributor.
285
+ If you are interested in tackling a good second issue, feel free to open a PR to fix it and link the PR to the issue. If you see that a PR has already been opened for this issue but did not get merged, have a look to understand why it wasn't merged and try to open an improved PR.
286
+ Good second issues are usually more difficult to get merged compared to good first issues, so don't hesitate to ask for help from the core maintainers. If your PR is almost finished the core maintainers can also jump into your PR and commit to it in order to get it merged.
287
+
288
+ ### 9. Adding pipelines, models, schedulers
289
+
290
+ Pipelines, models, and schedulers are the most important pieces of the Diffusers library.
291
+ They provide easy access to state-of-the-art diffusion technologies and thus allow the community to
292
+ build powerful generative AI applications.
293
+
294
+ By adding a new model, pipeline, or scheduler you might enable a new powerful use case for any of the user interfaces relying on Diffusers which can be of immense value for the whole generative AI ecosystem.
295
+
296
+ Diffusers has a couple of open feature requests for all three components - feel free to gloss over them
297
+ if you don't know yet what specific component you would like to add:
298
+ - [Model or pipeline](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+pipeline%2Fmodel%22)
299
+ - [Scheduler](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+scheduler%22)
300
+
301
+ Before adding any of the three components, it is strongly recommended that you give the [Philosophy guide](https://github.com/huggingface/diffusers/blob/main/PHILOSOPHY.md) a read to better understand the design of any of the three components. Please be aware that
302
+ we cannot merge model, scheduler, or pipeline additions that strongly diverge from our design philosophy
303
+ as it will lead to API inconsistencies. If you fundamentally disagree with a design choice, please
304
+ open a [Feedback issue](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feedback.md&title=) instead so that it can be discussed whether a certain design
305
+ pattern/design choice shall be changed everywhere in the library and whether we shall update our design philosophy. Consistency across the library is very important for us.
306
+
307
+ Please make sure to add links to the original codebase/paper to the PR and ideally also ping the
308
+ original author directly on the PR so that they can follow the progress and potentially help with questions.
309
+
310
+ If you are unsure or stuck in the PR, don't hesitate to leave a message to ask for a first review or help.
311
+
312
+ ## How to write a good issue
313
+
314
+ **The better your issue is written, the higher the chances that it will be quickly resolved.**
315
+
316
+ 1. Make sure that you've used the correct template for your issue. You can pick between *Bug Report*, *Feature Request*, *Feedback about API Design*, *New model/pipeline/scheduler addition*, *Forum*, or a blank issue. Make sure to pick the correct one when opening [a new issue](https://github.com/huggingface/diffusers/issues/new/choose).
317
+ 2. **Be precise**: Give your issue a fitting title. Try to formulate your issue description as simple as possible. The more precise you are when submitting an issue, the less time it takes to understand the issue and potentially solve it. Make sure to open an issue for one issue only and not for multiple issues. If you found multiple issues, simply open multiple issues. If your issue is a bug, try to be as precise as possible about what bug it is - you should not just write "Error in diffusers".
318
+ 3. **Reproducibility**: No reproducible code snippet == no solution. If you encounter a bug, maintainers **have to be able to reproduce** it. Make sure that you include a code snippet that can be copy-pasted into a Python interpreter to reproduce the issue. Make sure that your code snippet works, *i.e.* that there are no missing imports or missing links to images, ... Your issue should contain an error message **and** a code snippet that can be copy-pasted without any changes to reproduce the exact same error message. If your issue is using local model weights or local data that cannot be accessed by the reader, the issue cannot be solved. If you cannot share your data or model, try to make a dummy model or dummy data.
319
+ 4. **Minimalistic**: Try to help the reader as much as you can to understand the issue as quickly as possible by staying as concise as possible. Remove all code / all information that is irrelevant to the issue. If you have found a bug, try to create the easiest code example you can to demonstrate your issue, do not just dump your whole workflow into the issue as soon as you have found a bug. E.g., if you train a model and get an error at some point during the training, you should first try to understand what part of the training code is responsible for the error and try to reproduce it with a couple of lines. Try to use dummy data instead of full datasets.
320
+ 5. Add links. If you are referring to a certain naming, method, or model make sure to provide a link so that the reader can better understand what you mean. If you are referring to a specific PR or issue, make sure to link it to your issue. Do not assume that the reader knows what you are talking about. The more links you add to your issue the better.
321
+ 6. Formatting. Make sure to nicely format your issue by formatting code into Python code syntax, and error messages into normal code syntax. See the [official GitHub formatting docs](https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax) for more information.
322
+ 7. Think of your issue not as a ticket to be solved, but rather as a beautiful entry to a well-written encyclopedia. Every added issue is a contribution to publicly available knowledge. By adding a nicely written issue you not only make it easier for maintainers to solve your issue, but you are helping the whole community to better understand a certain aspect of the library.
323
+
324
+ ## How to write a good PR
325
+
326
+ 1. Be a chameleon. Understand existing design patterns and syntax and make sure your code additions flow seamlessly into the existing code base. Pull requests that significantly diverge from existing design patterns or user interfaces will not be merged.
327
+ 2. Be laser focused. A pull request should solve one problem and one problem only. Make sure to not fall into the trap of "also fixing another problem while we're adding it". It is much more difficult to review pull requests that solve multiple, unrelated problems at once.
328
+ 3. If helpful, try to add a code snippet that displays an example of how your addition can be used.
329
+ 4. The title of your pull request should be a summary of its contribution.
330
+ 5. If your pull request addresses an issue, please mention the issue number in
331
+ the pull request description to make sure they are linked (and people
332
+ consulting the issue know you are working on it);
333
+ 6. To indicate a work in progress please prefix the title with `[WIP]`. These
334
+ are useful to avoid duplicated work, and to differentiate it from PRs ready
335
+ to be merged;
336
+ 7. Try to formulate and format your text as explained in [How to write a good issue](#how-to-write-a-good-issue).
337
+ 8. Make sure existing tests pass;
338
+ 9. Add high-coverage tests. No quality testing = no merge.
339
+ - If you are adding new `@slow` tests, make sure they pass using
340
+ `RUN_SLOW=1 python -m pytest tests/test_my_new_model.py`.
341
+ CircleCI does not run the slow tests, but GitHub Actions does every night!
342
+ 10. All public methods must have informative docstrings that work nicely with markdown. See [`pipeline_latent_diffusion.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py) for an example.
343
+ 11. Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos, and other non-text files. We prefer to leverage a hf.co hosted `dataset` like
344
+ [`hf-internal-testing`](https://huggingface.co/hf-internal-testing) or [huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images) to place these files.
345
+ If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate your images
346
+ to this dataset.
347
+
348
+ ## How to open a PR
349
+
350
+ Before writing code, we strongly advise you to search through the existing PRs or
351
+ issues to make sure that nobody is already working on the same thing. If you are
352
+ unsure, it is always a good idea to open an issue to get some feedback.
353
+
354
+ You will need basic `git` proficiency to be able to contribute to
355
+ 🧨 Diffusers. `git` is not the easiest tool to use but it has the greatest
356
+ manual. Type `git --help` in a shell and enjoy. If you prefer books, [Pro
357
+ Git](https://git-scm.com/book/en/v2) is a very good reference.
358
+
359
+ Follow these steps to start contributing ([supported Python versions](https://github.com/huggingface/diffusers/blob/42f25d601a910dceadaee6c44345896b4cfa9928/setup.py#L270)):
360
+
361
+ 1. Fork the [repository](https://github.com/huggingface/diffusers) by
362
+ clicking on the 'Fork' button on the repository's page. This creates a copy of the code
363
+ under your GitHub user account.
364
+
365
+ 2. Clone your fork to your local disk, and add the base repository as a remote:
366
+
367
+ ```bash
368
+ $ git clone [email protected]:<your GitHub handle>/diffusers.git
369
+ $ cd diffusers
370
+ $ git remote add upstream https://github.com/huggingface/diffusers.git
371
+ ```
372
+
373
+ 3. Create a new branch to hold your development changes:
374
+
375
+ ```bash
376
+ $ git checkout -b a-descriptive-name-for-my-changes
377
+ ```
378
+
379
+ **Do not** work on the `main` branch.
380
+
381
+ 4. Set up a development environment by running the following command in a virtual environment:
382
+
383
+ ```bash
384
+ $ pip install -e ".[dev]"
385
+ ```
386
+
387
+ If you have already cloned the repo, you might need to `git pull` to get the most recent changes in the
388
+ library.
389
+
390
+ 5. Develop the features on your branch.
391
+
392
+ As you work on the features, you should make sure that the test suite
393
+ passes. You should run the tests impacted by your changes like this:
394
+
395
+ ```bash
396
+ $ pytest tests/<TEST_TO_RUN>.py
397
+ ```
398
+
399
+ Before you run the tests, please make sure you install the dependencies required for testing. You can do so
400
+ with this command:
401
+
402
+ ```bash
403
+ $ pip install -e ".[test]"
404
+ ```
405
+
406
+ You can also run the full test suite with the following command, but it takes
407
+ a beefy machine to produce a result in a decent amount of time now that
408
+ Diffusers has grown a lot. Here is the command for it:
409
+
410
+ ```bash
411
+ $ make test
412
+ ```
413
+
414
+ 🧨 Diffusers relies on `ruff` and `isort` to format its source code
415
+ consistently. After you make changes, apply automatic style corrections and code verifications
416
+ that can't be automated in one go with:
417
+
418
+ ```bash
419
+ $ make style
420
+ ```
421
+
422
+ 🧨 Diffusers also uses `ruff` and a few custom scripts to check for coding mistakes. Quality
423
+ control runs in CI, however, you can also run the same checks with:
424
+
425
+ ```bash
426
+ $ make quality
427
+ ```
428
+
429
+ Once you're happy with your changes, add changed files using `git add` and
430
+ make a commit with `git commit` to record your changes locally:
431
+
432
+ ```bash
433
+ $ git add modified_file.py
434
+ $ git commit -m "A descriptive message about your changes."
435
+ ```
436
+
437
+ It is a good idea to sync your copy of the code with the original
438
+ repository regularly. This way you can quickly account for changes:
439
+
440
+ ```bash
441
+ $ git pull upstream main
442
+ ```
443
+
444
+ Push the changes to your account using:
445
+
446
+ ```bash
447
+ $ git push -u origin a-descriptive-name-for-my-changes
448
+ ```
449
+
450
+ 6. Once you are satisfied, go to the
451
+ webpage of your fork on GitHub. Click on 'Pull request' to send your changes
452
+ to the project maintainers for review.
453
+
454
+ 7. It's ok if maintainers ask you for changes. It happens to core contributors
455
+ too! So everyone can see the changes in the Pull request, work in your local
456
+ branch and push the changes to your fork. They will automatically appear in
457
+ the pull request.
458
+
459
+ ### Tests
460
+
461
+ An extensive test suite is included to test the library behavior and several examples. Library tests can be found in
462
+ the [tests folder](https://github.com/huggingface/diffusers/tree/main/tests).
463
+
464
+ We like `pytest` and `pytest-xdist` because it's faster. From the root of the
465
+ repository, here's how to run tests with `pytest` for the library:
466
+
467
+ ```bash
468
+ $ python -m pytest -n auto --dist=loadfile -s -v ./tests/
469
+ ```
470
+
471
+ In fact, that's how `make test` is implemented!
472
+
473
+ You can specify a smaller set of tests in order to test only the feature
474
+ you're working on.
475
+
476
+ By default, slow tests are skipped. Set the `RUN_SLOW` environment variable to
477
+ `yes` to run them. This will download many gigabytes of models — make sure you
478
+ have enough disk space and a good Internet connection, or a lot of patience!
479
+
480
+ ```bash
481
+ $ RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./tests/
482
+ ```
483
+
484
+ `unittest` is fully supported, here's how to run tests with it:
485
+
486
+ ```bash
487
+ $ python -m unittest discover -s tests -t . -v
488
+ $ python -m unittest discover -s examples -t examples -v
489
+ ```
490
+
491
+ ### Syncing forked main with upstream (HuggingFace) main
492
+
493
+ To avoid pinging the upstream repository which adds reference notes to each upstream PR and sends unnecessary notifications to the developers involved in these PRs,
494
+ when syncing the main branch of a forked repository, please, follow these steps:
495
+ 1. When possible, avoid syncing with the upstream using a branch and PR on the forked repository. Instead, merge directly into the forked main.
496
+ 2. If a PR is absolutely necessary, use the following steps after checking out your branch:
497
+ ```bash
498
+ $ git checkout -b your-branch-for-syncing
499
+ $ git pull --squash --no-commit upstream main
500
+ $ git commit -m '<your message without GitHub references>'
501
+ $ git push --set-upstream origin your-branch-for-syncing
502
+ ```
503
+
504
+ ### Style guide
505
+
506
+ For documentation strings, 🧨 Diffusers follows the [Google style](https://google.github.io/styleguide/pyguide.html).