import torch import pandas as pd import os from tqdm import tqdm from concurrent.futures import ThreadPoolExecutor from datetime import datetime def from_time_2_second(time_str): # 使用 strptime 解析时间字符串 time_obj = datetime.strptime(time_str, '%H:%M:%S.%f') # 计算总秒数 total_seconds = time_obj.hour * 3600 + time_obj.minute * 60 + time_obj.second + time_obj.microsecond / 1e6 #print(total_seconds) return total_seconds # 读取数据 df = pd.read_parquet("//home/cn/Datasets/SakugaDataset/parquet/fliter_49_aesthetic.parquet") df = df[['identifier', 'scene_start_time', 'scene_end_time', 'fps', "text_description", "aesthetic_score", "dynamic_score"]] df = df.dropna(subset=['scene_start_time', 'scene_end_time', 'fps', "text_description", "aesthetic_score", "dynamic_score"]) df['identifier_video'] = df['identifier'].apply(lambda x: int(x.split(':')[0])) base_path = '/home/cn/Datasets/SakugaDataset/split/train_aesthetic' rows_to_delete = [] print(df.shape) # 定义检查函数 def check_row(index, row): folder_path = os.path.join(base_path, str(row['identifier_video'])) start_time=from_time_2_second(row['scene_start_time']) end_time=from_time_2_second(row['scene_end_time']) fps=row['fps'] total_frame_num=(end_time-start_time)*fps if total_frame_num<81: return index if not os.path.exists(folder_path): return index if os.path.exists(folder_path) and os.path.isdir(folder_path): if len(os.listdir(folder_path)) == 0: return index return None # 设置进度条 progress_dataset_bar = tqdm(total=df.shape[0], desc="Loading videos") # 使用多线程执行检查 with ThreadPoolExecutor(max_workers=16) as executor: futures = [] for index, row in df.iterrows(): futures.append(executor.submit(check_row, index, row)) # 收集结果 for future in tqdm(futures, desc="Processing results"): result = future.result() if result is not None: rows_to_delete.append(result) progress_dataset_bar.update(1) progress_dataset_bar.close() # 删除满足条件的行 df.drop(rows_to_delete, inplace=True) df.reset_index(drop=True, inplace=True) print(df.shape) # 保存过滤后的数据 output_parquet_path ="/home/cn/Datasets/SakugaDataset/parquet/fliter_train_81_2.parquet" df.to_parquet(output_parquet_path, index=False) #1054702 *8