Spaces:
Running
Running
File size: 5,966 Bytes
c35600d 8b1f0bb 0445c20 151391d 8b1f0bb b38c52a 0745d65 8b1f0bb b38c52a 8b1f0bb c35600d b38c52a c35600d 8b1f0bb c35600d 8b1f0bb c35600d 8b1f0bb c35600d ca9eea2 8b1f0bb c35600d 8b1f0bb c35600d 8b1f0bb c35600d 8b1f0bb c35600d b38c52a 8b1f0bb c35600d 8b1f0bb c35600d 8b1f0bb b38c52a 8b1f0bb c35600d 0745d65 0445c20 0745d65 8b1f0bb 59a0a73 0445c20 8b1f0bb 0745d65 8b1f0bb c35600d 0445c20 c35600d 0445c20 c35600d 8b1f0bb c35600d 8b1f0bb 0445c20 45afa26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import gradio as gr
import os
import json
import requests
#Streaming endpoint
API_URL = "https://api.openai.com/v1/chat/completions" #os.getenv("API_URL") + "/generate_stream"
#Testing with my Open AI Key
OPENAI_API_KEY = os.getenv("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")
def predict(inputs, top_p, temperature, openai_api_key, chat_counter, chatbot=[], history=[]):
# μ¬μ©μμ μ
λ ₯μ λλ μ΄μ
μ€νμΌμ ν둬ννΈλ‘ λ³ν
narration_prompt = f"λμμμ μ¬μ©ν μ λ¬Έμ μΈ λλ μ΄μ
μ μμ±νλΌ. λ°λμ νκΈλ‘ μμ±ν κ². μΌμ²΄μ μ§λ¬Έμ΄λ μ§μ, λ°°κ²½ μ€λͺ
λ±μ λ
ΈμΆ νκ±°λ μΆλ ₯νμ§ λ§κ³ μμν λλ μ΄μ
λ§ 2μ€μ© λ¬Άμ΄μ μ΅λ 8μ€ μ΄λ΄λ‘ μΆλ ₯λ ₯. μ
λ ₯: '{inputs}'"
payload = {
"model": "gpt-4-1106-preview",
"messages": [{"role": "system", "content": narration_prompt}],
"temperature": temperature,
"top_p": top_p,
"n": 1,
"stream": True,
"presence_penalty": 0,
"frequency_penalty": 0,
"max_tokens": 1000 # λλ μ΄μ
μ κΈΈμ΄λ₯Ό μ ν
}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {openai_api_key}"
}
print(f"chat_counter - {chat_counter}")
if chat_counter != 0 :
messages=[]
for data in chatbot:
temp1 = {}
temp1["role"] = "user"
temp1["content"] = data[0]
temp2 = {}
temp2["role"] = "assistant"
temp2["content"] = data[1]
messages.append(temp1)
messages.append(temp2)
temp3 = {}
temp3["role"] = "user"
temp3["content"] = inputs
messages.append(temp3)
#messages
payload = {
"model": "gpt-4-1106-preview",
"messages": messages, #[{"role": "user", "content": f"{inputs}"}],
"temperature" : temperature, #1.0,
"top_p": top_p, #1.0,
"n" : 1,
"stream": True,
"presence_penalty":0,
"frequency_penalty":0,
}
chat_counter+=1
history.append(inputs)
print(f"payload is - {payload}")
# make a POST request to the API endpoint using the requests.post method, passing in stream=True
response = requests.post(API_URL, headers=headers, json=payload, stream=True)
#response = requests.post(API_URL, headers=headers, json=payload, stream=True)
token_counter = 0
partial_words = ""
counter=0
for chunk in response.iter_lines():
#Skipping first chunk
if counter == 0:
counter+=1
continue
# λλ μ΄μ
μ κΈΈμ΄λ₯Ό 8μ€λ‘ μ ν
if len(history) >= 8:
break
#counter+=1
# check whether each line is non-empty
if chunk.decode() :
chunk = chunk.decode()
# decode each line as response data is in bytes
if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']:
#if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0:
# break
partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"]
if token_counter == 0:
history.append(" " + partial_words)
else:
history[-1] = partial_words
chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] # convert to tuples of list
token_counter+=1
yield chat, history, chat_counter # resembles {chatbot: chat, state: history}
return chat, history, chat_counter
def reset_textbox():
return gr.update(value='')
title = """<h1 align="center">νμ μ€ν¬λ¦½νΈ</h1>"""
description = """μμ μμ±μ μν μ€ν¬λ¦½νΈλ₯Ό AIκ° μλμΌλ‘ μμ±ν©λλ€. μ£Όμ ν€μλλ λͺ©μ λ± νμν λ΄μ©λ§ κ°λ¨ν μ
λ ₯νμΈμ. :
```
User: <utterance>
Assistant: <utterance>
User: <utterance>
Assistant: <utterance>
...
```
In this app, you can explore the outputs of a gpt-3.5-turbo LLM.
"""
with gr.Blocks(css = """#col_container {width: 1000px; margin-left: auto; margin-right: auto;}
#chatbot {height: 520px; overflow: auto;}""") as demo:
gr.HTML(title)
with gr.Column(elem_id = "col_container"):
openai_api_key = gr.Textbox(type='password', label="Enter your OpenAI API key here")
# μΆλ ₯νΌ (chatbot)μ μ¬μ©μ μ
λ ₯νΌ (inputs) μμ λ°°μΉ
chatbot = gr.Chatbot(elem_id='chatbot') # c
inputs = gr.Textbox(placeholder="μ¬κΈ°μ μ
λ ₯νμΈμ.", label="λλ μ΄μ
μ€ν¬λ¦½νΈλ₯Ό μμ±νκ³ μΆμ μ£Όμ μ΄λ λ¬Έμ₯μ μ
λ ₯νμΈμ.") # t
state = gr.State([]) # s
b1 = gr.Button()
#inputs, top_p, temperature, top_k, repetition_penalty
with gr.Accordion("Parameters", open=False):
top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",)
temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",)
#top_k = gr.Slider( minimum=1, maximum=50, value=4, step=1, interactive=True, label="Top-k",)
#repetition_penalty = gr.Slider( minimum=0.1, maximum=3.0, value=1.03, step=0.01, interactive=True, label="Repetition Penalty", )
chat_counter = gr.Number(value=0, visible=False, precision=0)
inputs.submit( predict, [inputs, top_p, temperature, openai_api_key, chat_counter, chatbot, state], [chatbot, state, chat_counter],)
b1.click( predict, [inputs, top_p, temperature, openai_api_key, chat_counter, chatbot, state], [chatbot, state, chat_counter],)
b1.click(reset_textbox, [], [inputs])
inputs.submit(reset_textbox, [], [inputs])
#gr.Markdown(description)
demo.queue().launch(debug=True)
|