kai-llm-insu / app.py
seawolf2357's picture
Update app.py
238efa7 verified
raw
history blame
4.72 kB
import discord
import logging
import os
import json
from huggingface_hub import InferenceClient
import asyncio
import subprocess
from sentence_transformers import SentenceTransformer, util
import torch
# λ‘œκΉ… μ„€μ •
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s:%(levelname)s:%(name)s: %(message)s', handlers=[logging.StreamHandler()])
# μΈν…νŠΈ μ„€μ •
intents = discord.Intents.default()
intents.message_content = True
intents.messages = True
intents.guilds = True
intents.guild_messages = True
# μΆ”λ‘  API ν΄λΌμ΄μ–ΈνŠΈ μ„€μ •
hf_client = InferenceClient("CohereForAI/c4ai-command-r-plus", token=os.getenv("HF_TOKEN"))
# νŠΉμ • 채널 ID
SPECIFIC_CHANNEL_ID = int(os.getenv("DISCORD_CHANNEL_ID"))
# λŒ€ν™” νžˆμŠ€ν† λ¦¬λ₯Ό μ €μž₯ν•  μ „μ—­ λ³€μˆ˜
conversation_history = []
# JSON 데이터셋 λ‘œλ“œ
with open("jangtest.json", "r", encoding="utf-8") as f:
dataset = json.load(f)
# λ¬Έμž₯ μž„λ² λ”© λͺ¨λΈ λ‘œλ“œ
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
# λ°μ΄ν„°μ…‹μ˜ μž„λ² λ”©μ„ 미리 계산
dataset_texts = [json.dumps(item, ensure_ascii=False) for item in dataset]
dataset_embeddings = model.encode(dataset_texts, convert_to_tensor=True)
class MyClient(discord.Client):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.is_processing = False
async def on_ready(self):
logging.info(f'{self.user}둜 λ‘œκ·ΈμΈλ˜μ—ˆμŠ΅λ‹ˆλ‹€!')
subprocess.Popen(["python", "web.py"])
logging.info("Web.py server has been started.")
async def on_message(self, message):
if message.author == self.user:
return
if not self.is_message_in_specific_channel(message):
return
if self.is_processing:
return
self.is_processing = True
try:
response = await generate_response(message)
await message.channel.send(response)
finally:
self.is_processing = False
def is_message_in_specific_channel(self, message):
return message.channel.id == SPECIFIC_CHANNEL_ID or (
isinstance(message.channel, discord.Thread) and message.channel.parent_id == SPECIFIC_CHANNEL_ID
)
async def generate_response(message):
global conversation_history
user_input = message.content
user_mention = message.author.mention
# μœ μ‚¬ν•œ 데이터 μ°ΎκΈ°
most_similar_data = find_most_similar_data(user_input)
system_message = f"""
당신은 'kAI'λΌλŠ” μ΄λ¦„μ˜ ν•œκ΅­ λ³΄ν—˜ μƒν’ˆμ— λŒ€ν•œ AI μ‘°μ–Έμžμž…λ‹ˆλ‹€.
λ°˜λ“œμ‹œ 제곡된 λ°μ΄ν„°μ…‹μ˜ μ •λ³΄λ§Œμ„ μ‚¬μš©ν•˜μ—¬ λ‹΅λ³€ν•΄μ•Ό ν•©λ‹ˆλ‹€.
제곡된 데이터에 μ—†λŠ” 정보에 λŒ€ν•΄μ„œλŠ” "μ£„μ†‘ν•©λ‹ˆλ‹€. ν•΄λ‹Ή μ •λ³΄λŠ” μ œκ°€ κ°€μ§„ 데이터에 μ—†μŠ΅λ‹ˆλ‹€."라고 λ‹΅λ³€ν•˜μ‹­μ‹œμ˜€.
λͺ¨λ“  닡변은 ν•œκΈ€λ‘œ ν•˜κ³ , markdown ν˜•μ‹μœΌλ‘œ 좜λ ₯ν•˜μ„Έμš”.
"""
conversation_history.append({"role": "user", "content": user_input})
messages = [{"role": "system", "content": system_message}] + conversation_history
if most_similar_data:
messages.append({"role": "system", "content": f"κ΄€λ ¨ 정보: {most_similar_data}"})
else:
return f"{user_mention}, μ£„μ†‘ν•©λ‹ˆλ‹€. κ·€ν•˜μ˜ 질문과 κ΄€λ ¨λœ 정보λ₯Ό 찾을 수 μ—†μŠ΅λ‹ˆλ‹€."
logging.debug(f'Messages to be sent to the model: {messages}')
loop = asyncio.get_event_loop()
response = await loop.run_in_executor(None, lambda: hf_client.chat_completion(
messages, max_tokens=1000, stream=True, temperature=0.7, top_p=0.85))
full_response = []
for part in response:
logging.debug(f'Part received from stream: {part}')
if part.choices and part.choices[0].delta and part.choices[0].delta.content:
full_response.append(part.choices[0].delta.content)
full_response_text = ''.join(full_response)
logging.debug(f'Full model response: {full_response_text}')
conversation_history.append({"role": "assistant", "content": full_response_text})
return f"{user_mention}, {full_response_text}"
def find_most_similar_data(query):
query_embedding = model.encode(query, convert_to_tensor=True)
# 코사인 μœ μ‚¬λ„ 계산
cos_scores = util.pytorch_cos_sim(query_embedding, dataset_embeddings)[0]
top_result = torch.topk(cos_scores, k=1)
if top_result.values[0] > 0.5: # μž„κ³„κ°’ μ„€μ •
return json.dumps(dataset[top_result.indices[0]], ensure_ascii=False, indent=2)
else:
return None
if __name__ == "__main__":
discord_client = MyClient(intents=intents)
discord_client.run(os.getenv('DISCORD_TOKEN'))