Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,23 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
import requests
|
|
|
|
|
|
|
|
|
4 |
|
5 |
# μ΄λ―Έμ§ μΈμ νμ΄νλΌμΈ λ‘λ
|
6 |
image_model = pipeline("image-classification", model="google/vit-base-patch16-224")
|
7 |
|
8 |
-
hugging_face_auth_token = os.getenv("HUGGING_FACE_AUTH_TOKEN")
|
9 |
-
|
10 |
def get_audiogen(prompt):
|
11 |
# μ€λμ€ μμ± λͺ¨λΈ API νΈμΆ
|
12 |
response = requests.post(
|
13 |
"https://api-inference.huggingface.co/models/fffiloni/audiogen",
|
14 |
-
headers={"Authorization": "Bearer
|
15 |
json={"inputs": prompt, "parameters": {"length": 10}, "options": {"use_cache": False}}
|
16 |
)
|
17 |
result = response.json()
|
18 |
-
#
|
19 |
-
# μ: μμ±λ μ€λμ€ νμΌμ URLμ λ°ννκ±°λ, μ€λμ€ λ°μ΄ν° μ체λ₯Ό λ°νν μ μμ΅λλ€.
|
20 |
return result
|
21 |
|
22 |
def classify_and_generate_audio(uploaded_image):
|
@@ -27,8 +28,7 @@ def classify_and_generate_audio(uploaded_image):
|
|
27 |
# μ€λμ€ μμ±
|
28 |
audio_result = get_audiogen(top_prediction)
|
29 |
|
30 |
-
# audio_resultλ₯Ό μ²λ¦¬νμ¬ Gradioκ° μ¬μν μ μλ νμμΌλ‘
|
31 |
-
# μ: audio_result['url'] λλ audio_result['audio_data'] λ±
|
32 |
return top_prediction, audio_result
|
33 |
|
34 |
# Gradio μΈν°νμ΄μ€ μμ±
|
@@ -42,4 +42,3 @@ iface = gr.Interface(
|
|
42 |
|
43 |
# μΈν°νμ΄μ€ μ€ν
|
44 |
iface.launch()
|
45 |
-
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
import requests
|
4 |
+
import os
|
5 |
+
|
6 |
+
# νκ²½λ³μμμ Hugging Face API ν ν°μ λ‘λ
|
7 |
+
hugging_face_auth_token = os.getenv("HUGGING_FACE_AUTH_TOKEN")
|
8 |
|
9 |
# μ΄λ―Έμ§ μΈμ νμ΄νλΌμΈ λ‘λ
|
10 |
image_model = pipeline("image-classification", model="google/vit-base-patch16-224")
|
11 |
|
|
|
|
|
12 |
def get_audiogen(prompt):
|
13 |
# μ€λμ€ μμ± λͺ¨λΈ API νΈμΆ
|
14 |
response = requests.post(
|
15 |
"https://api-inference.huggingface.co/models/fffiloni/audiogen",
|
16 |
+
headers={"Authorization": f"Bearer {hugging_face_auth_token}"}, # μμ λ λΆλΆ
|
17 |
json={"inputs": prompt, "parameters": {"length": 10}, "options": {"use_cache": False}}
|
18 |
)
|
19 |
result = response.json()
|
20 |
+
# μμ±λ μ€λμ€ νμΌμ URLμ λ°ννκ±°λ, μ€λμ€ λ°μ΄ν° μ체λ₯Ό λ°ν
|
|
|
21 |
return result
|
22 |
|
23 |
def classify_and_generate_audio(uploaded_image):
|
|
|
28 |
# μ€λμ€ μμ±
|
29 |
audio_result = get_audiogen(top_prediction)
|
30 |
|
31 |
+
# audio_resultλ₯Ό μ²λ¦¬νμ¬ Gradioκ° μ¬μν μ μλ νμμΌλ‘ λ°ν
|
|
|
32 |
return top_prediction, audio_result
|
33 |
|
34 |
# Gradio μΈν°νμ΄μ€ μμ±
|
|
|
42 |
|
43 |
# μΈν°νμ΄μ€ μ€ν
|
44 |
iface.launch()
|
|