File size: 963 Bytes
eef17a1
b59f0da
5b0e95f
a0b6e16
eef17a1
 
b8bab42
eef17a1
 
e828a66
eef17a1
e828a66
 
eef17a1
 
 
e828a66
eef17a1
 
 
 
 
 
 
 
b59f0da
eef17a1
3bdb854
eef17a1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import gradio as gr
import openai
import os

# ν™˜κ²½ λ³€μˆ˜μ—μ„œ OpenAI API ν‚€λ₯Ό λΆˆλŸ¬μ˜΅λ‹ˆλ‹€.
openai.api_key = os.getenv("OPENAI_API_KEY")

def generate_keywords(scene_description):
    response = openai.Completion.create(
        model="text-davinci-003",  # μ‚¬μš©ν•  λͺ¨λΈμ„ μ§€μ •ν•©λ‹ˆλ‹€.
        prompt=f"Generate a representative English keyword for the following scene description: {scene_description}",
        max_tokens=60,
        temperature=0.7
    )
    keyword = response.choices[0].text.strip()
    return keyword
    
# Gradio μ•± μ •μ˜
def gradio_app():
    with gr.Blocks() as demo:
        with gr.Row():
            scene_description = gr.Textbox(label="Scene Description")
            keyword_output = gr.Textbox(label="Generated Keyword")
        gr.Button("Generate Keyword").click(
            generate_keywords, inputs=[scene_description], outputs=[keyword_output]
        )
    return demo

app = gradio_app()
app.launch()