Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import torch
|
|
2 |
import gradio as gr
|
3 |
import soundfile as sf
|
4 |
import tempfile
|
|
|
5 |
|
6 |
from transformers import (
|
7 |
SpeechT5Processor,
|
@@ -9,35 +10,30 @@ from transformers import (
|
|
9 |
SpeechT5HifiGan
|
10 |
)
|
11 |
from datasets import load_dataset
|
12 |
-
import librosa
|
13 |
|
14 |
-
#
|
15 |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_vc")
|
16 |
model = SpeechT5ForSpeechToSpeech.from_pretrained("microsoft/speecht5_vc")
|
17 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
18 |
|
19 |
-
#
|
20 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
21 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
22 |
|
23 |
# Funci贸n principal
|
24 |
def voice_conversion(audio_file):
|
25 |
-
|
26 |
-
audio, sr = librosa.load(audio_file, sr=16000) # aseg煤rate de que est茅 en 16kHz
|
27 |
inputs = processor(audio=audio, sampling_rate=16000, return_tensors="pt")
|
28 |
-
|
29 |
with torch.no_grad():
|
30 |
speech = model.generate_speech(inputs["input_values"], speaker_embeddings, vocoder=vocoder)
|
31 |
-
|
32 |
-
# Guardar en archivo temporal
|
33 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
|
34 |
sf.write(f.name, speech.numpy(), samplerate=16000)
|
35 |
return f.name
|
36 |
|
37 |
-
# Interfaz
|
38 |
interface = gr.Interface(
|
39 |
fn=voice_conversion,
|
40 |
-
inputs=gr.Audio(
|
41 |
outputs=gr.Audio(type="filepath", label="Voz convertida"),
|
42 |
title="SpeechT5 Voice Conversion",
|
43 |
description="Convierte una voz hablada en otra con SpeechT5 de Microsoft"
|
|
|
2 |
import gradio as gr
|
3 |
import soundfile as sf
|
4 |
import tempfile
|
5 |
+
import librosa
|
6 |
|
7 |
from transformers import (
|
8 |
SpeechT5Processor,
|
|
|
10 |
SpeechT5HifiGan
|
11 |
)
|
12 |
from datasets import load_dataset
|
|
|
13 |
|
14 |
+
# Modelos
|
15 |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_vc")
|
16 |
model = SpeechT5ForSpeechToSpeech.from_pretrained("microsoft/speecht5_vc")
|
17 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
18 |
|
19 |
+
# Embeddings de voz
|
20 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
21 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
22 |
|
23 |
# Funci贸n principal
|
24 |
def voice_conversion(audio_file):
|
25 |
+
audio, sr = librosa.load(audio_file, sr=16000)
|
|
|
26 |
inputs = processor(audio=audio, sampling_rate=16000, return_tensors="pt")
|
|
|
27 |
with torch.no_grad():
|
28 |
speech = model.generate_speech(inputs["input_values"], speaker_embeddings, vocoder=vocoder)
|
|
|
|
|
29 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
|
30 |
sf.write(f.name, speech.numpy(), samplerate=16000)
|
31 |
return f.name
|
32 |
|
33 |
+
# Interfaz
|
34 |
interface = gr.Interface(
|
35 |
fn=voice_conversion,
|
36 |
+
inputs=gr.Audio(type="filepath", label="Sube un audio (voz hablada)"),
|
37 |
outputs=gr.Audio(type="filepath", label="Voz convertida"),
|
38 |
title="SpeechT5 Voice Conversion",
|
39 |
description="Convierte una voz hablada en otra con SpeechT5 de Microsoft"
|