Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import numpy as np | |
| from tensorflow.keras.models import load_model | |
| from tensorflow.keras.preprocessing.image import img_to_array | |
| # Cargar el modelo .keras | |
| model = load_model('cnn_covid.keras') | |
| # Funci贸n para hacer la predicci贸n | |
| def predict_image(image): | |
| # Preprocesar la imagen | |
| img = image.resize((200, 200)) # Redimensionar a 200x200 | |
| img_array = img_to_array(img) | |
| img_array = np.expand_dims(img_array, axis=0) # A帽adir dimensi贸n para el batch | |
| # Realizar la predicci贸n | |
| prediction = model.predict(img_array) | |
| # Interpretar la predicci贸n | |
| result = 'COVID19' if prediction[0][0] < 0.5 else 'NORMAL' | |
| return result, "If you don't have an image, please download one from this link: https://drive.google.com/drive/folders/1Dr11dKuSlgtWaTzNLRixzB19y588iNib?usp=sharing" | |
| # Crear la interfaz de Gradio | |
| iface = gr.Interface(fn=predict_image,inputs=gr.Image(type="pil"), outputs=[gr.Textbox(label="Prediction"), gr.Textbox(label="Download Link")], live=True) | |
| # Lanzar la interfaz | |
| iface.launch() |