seemamourya210 commited on
Commit
a4f1a29
·
verified ·
1 Parent(s): 0db2263

it is my first commit

Browse files
Files changed (1) hide show
  1. app.py +26 -53
app.py CHANGED
@@ -1,64 +1,37 @@
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
27
 
28
- response = ""
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
+ from transformers import AutoTokenizer, AutoModelForCausalLM
2
+ import torch
3
  import gradio as gr
4
+ from gtts import gTTS
5
+ from langdetect import detect
6
 
7
+ model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
 
 
 
8
 
9
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
10
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float32)
11
 
12
+ def respond(user_input):
13
+ if not user_input:
14
+ return "Please ask something.", None
 
 
 
 
 
 
15
 
16
+ detected_lang = detect(user_input)
 
 
 
 
17
 
18
+ prompt = f"[INST] {user_input} [/INST]"
19
+ inputs = tokenizer(prompt, return_tensors="pt")
20
+ outputs = model.generate(**inputs, max_new_tokens=256, pad_token_id=tokenizer.eos_token_id)
21
 
22
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
23
 
24
+ # Voice output
25
+ tts = gTTS(text=response, lang='hi' if detected_lang == 'hi' else 'en')
26
+ tts.save("voice_response.mp3")
27
+ return response, "voice_response.mp3"
 
 
 
 
28
 
29
+ iface = gr.Interface(
30
+ fn=respond,
31
+ inputs=gr.Textbox(lines=2, placeholder="Ask me anything..."),
32
+ outputs=[gr.Textbox(label="TeachMe Says"), gr.Audio(label="Voice", autoplay=True)],
33
+ title="TeachMe - Your Smart Tutor",
34
+ description="Light AI bot with Hindi + English voice support."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  )
36
 
37
+ iface.launch()