from transformers import AutoTokenizer, AutoModelForCausalLM import torch import gradio as gr from gtts import gTTS from langdetect import detect model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float32) def respond(user_input): if not user_input: return "Please ask something.", None detected_lang = detect(user_input) prompt = f"[INST] {user_input} [/INST]" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=256, pad_token_id=tokenizer.eos_token_id) response = tokenizer.decode(outputs[0], skip_special_tokens=True) # Voice output tts = gTTS(text=response, lang='hi' if detected_lang == 'hi' else 'en') tts.save("voice_response.mp3") return response, "voice_response.mp3" iface = gr.Interface( fn=respond, inputs=gr.Textbox(lines=2, placeholder="Ask me anything..."), outputs=[gr.Textbox(label="TeachMe Says"), gr.Audio(label="Voice", autoplay=True)], title="TeachMe - Your Smart Tutor", description="Light AI bot with Hindi + English voice support." ) iface.launch()