Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
|
| 3 |
+
from transformers import pipeline
|
| 4 |
+
import gradio as gr
|
| 5 |
+
|
| 6 |
+
# Load the text classification pipeline with the custom model
|
| 7 |
+
pipe = pipeline("text-classification", model="palakagl/bert_TextClassification")
|
| 8 |
+
|
| 9 |
+
# Define function to classify input text
|
| 10 |
+
def classify_text(text):
|
| 11 |
+
result = pipe(text)
|
| 12 |
+
# Format nicely for display
|
| 13 |
+
return {res["label"]: round(res["score"], 4) for res in result}
|
| 14 |
+
|
| 15 |
+
# Create the Gradio interface
|
| 16 |
+
interface = gr.Interface(
|
| 17 |
+
fn=classify_text,
|
| 18 |
+
inputs=gr.Textbox(lines=3, placeholder="Enter text to classify..."),
|
| 19 |
+
outputs=gr.Label(num_top_classes=3),
|
| 20 |
+
title="BERT Text Classifier",
|
| 21 |
+
description="Enter text to classify using the BERT model from palakagl/bert_TextClassification."
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
# Launch the app
|
| 25 |
+
if __name__ == "__main__":
|
| 26 |
+
interface.launch()
|