Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from PIL import Image | |
| from transformers import BitsAndBytesConfig, PaliGemmaForConditionalGeneration, PaliGemmaProcessor | |
| import spaces | |
| import torch | |
| import os | |
| access_token = os.getenv('HF_token') | |
| model_id = "selamw/BirdWatcher-AI" | |
| # model_id = "selamw/bird-Identifier" | |
| bnb_config = BitsAndBytesConfig(load_in_8bit=True) | |
| def convert_to_markdown(input_text): | |
| """Converts bird information text to Markdown format, | |
| making specific keywords bold and adding headings. | |
| Args: | |
| input_text (str): The input text containing bird information. | |
| Returns: | |
| str: The formatted Markdown text. | |
| """ | |
| bold_words = ['Look:', 'Cool Fact!:', 'Habitat:', 'Food:', 'Birdie Behaviors:'] | |
| # Split into title and content based on the first ":", handling extra whitespace | |
| title, content = map(str.strip, input_text.split(":", 1)) | |
| # Bold the keywords | |
| for word in bold_words: | |
| content = content.replace(word, f'\n**{word}\n') | |
| # Construct the Markdown output with headings | |
| formatted_output = f"** {title} **\n{content}" | |
| return formatted_output.strip() | |
| def infer_fin_pali(image, question): | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, quantization_config=bnb_config, token=access_token) | |
| processor = PaliGemmaProcessor.from_pretrained(model_id, token=access_token) | |
| inputs = processor(images=image, text=question, return_tensors="pt").to(device) | |
| predictions = model.generate(**inputs, max_new_tokens=512) | |
| decoded_output = processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n") | |
| # Ensure proper Markdown formatting | |
| formatted_output = convert_to_markdown(decoded_output) | |
| # formatted_output = (decoded_output) | |
| return formatted_output | |
| css = """ | |
| #mkd { | |
| height: 500px; | |
| overflow: auto; | |
| border: 1px solid #ccc; | |
| } | |
| h1 { | |
| text-align: center; | |
| } | |
| h3 { | |
| text-align: center; | |
| } | |
| h2 { | |
| text-align: left; | |
| } | |
| span.gray-text { | |
| color: gray; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| gr.HTML("<h1>𦩠BirdWatcher AI π¦</h1>") | |
| gr.HTML("<h3>Upload an image of a bird, and the model will generate a detailed description of its species.</h3>") | |
| with gr.Tab(label="Bird Identification"): | |
| with gr.Row(): | |
| input_img = gr.Image(label="Input Bird Image") | |
| with gr.Column(): | |
| with gr.Row(): | |
| question = gr.Text(label="Default Prompt", value="Describe this bird species", elem_id="default-prompt") | |
| with gr.Row(): | |
| submit_btn = gr.Button(value="Run") | |
| with gr.Row(): | |
| output = gr.Markdown(label="Response") # Use Markdown component to display output | |
| # output = gr.Text(label="Response") # Use Markdown component to display output | |
| submit_btn.click(infer_fin_pali, [input_img, question], [output]) | |
| gr.Examples( | |
| [["01.jpg", "Describe this bird species"], | |
| ["02.jpg", "Describe this bird species"], | |
| ["03.jpg", "Describe this bird species"], | |
| ["04.jpeg", "Describe this bird species"]], | |
| inputs=[input_img, question], | |
| outputs=[output], | |
| fn=infer_fin_pali, | |
| label='Examples π' | |
| ) | |
| demo.launch(debug=True) |