Spaces:
Runtime error
Runtime error
semioz
commited on
Commit
·
13ba8fa
1
Parent(s):
81917a3
init1
Browse files- .gitignore +34 -0
- agent.py +103 -0
- app.py +5 -10
- pyproject.toml +30 -0
- requirements.txt +0 -2
- system_prompt.txt +9 -0
- tools.py +196 -0
- uv.lock +0 -0
.gitignore
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
|
3 |
+
|
4 |
+
.Python
|
5 |
+
build/
|
6 |
+
venv/
|
7 |
+
ENV/
|
8 |
+
env/
|
9 |
+
.env
|
10 |
+
.venv
|
11 |
+
env.bak/
|
12 |
+
venv.bak/
|
13 |
+
.python-version
|
14 |
+
|
15 |
+
# IPython
|
16 |
+
profile_default/
|
17 |
+
ipython_config.py
|
18 |
+
|
19 |
+
# Logs
|
20 |
+
*.log
|
21 |
+
logs/
|
22 |
+
log/
|
23 |
+
|
24 |
+
|
25 |
+
.DS_Store
|
26 |
+
.project
|
27 |
+
.pydevproject
|
28 |
+
|
29 |
+
*.db
|
30 |
+
*.rdb
|
31 |
+
|
32 |
+
.env
|
33 |
+
|
34 |
+
.ruff_cache
|
agent.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
|
3 |
+
from langchain_core.messages import HumanMessage, SystemMessage
|
4 |
+
from langchain_groq import ChatGroq
|
5 |
+
from langchain_huggingface import (
|
6 |
+
ChatHuggingFace,
|
7 |
+
HuggingFaceEmbeddings,
|
8 |
+
HuggingFaceEndpoint,
|
9 |
+
)
|
10 |
+
from langgraph.graph import START, MessagesState, StateGraph
|
11 |
+
from langgraph.prebuilt import ToolNode, tools_condition
|
12 |
+
|
13 |
+
from tools import tools
|
14 |
+
|
15 |
+
logger = logging.getLogger(__name__)
|
16 |
+
|
17 |
+
|
18 |
+
# ----- Initializing vector store and retriever tool -------
|
19 |
+
|
20 |
+
with open("system_prompt.txt", encoding="utf-8") as f:
|
21 |
+
system_prompt = f.read()
|
22 |
+
print(system_prompt)
|
23 |
+
|
24 |
+
sys_msg = SystemMessage(content=system_prompt)
|
25 |
+
|
26 |
+
embeddings = HuggingFaceEmbeddings(
|
27 |
+
model_name="sentence-transformers/all-mpnet-base-v2"
|
28 |
+
) # dim=768
|
29 |
+
|
30 |
+
'''
|
31 |
+
supabase: Client = create_client(
|
32 |
+
os.environ.get("SUPABASE_URL"), os.environ.get("SUPABASE_SERVICE_ROLE_KEY")
|
33 |
+
)
|
34 |
+
vector_store = SupabaseVectorStore(
|
35 |
+
client=supabase,
|
36 |
+
embedding=embeddings,
|
37 |
+
table_name="documents2",
|
38 |
+
query_name="match_documents_2",
|
39 |
+
)
|
40 |
+
create_retriever_tool = create_retriever_tool(
|
41 |
+
retriever=vector_store.as_retriever(),
|
42 |
+
name="Question Search",
|
43 |
+
description="A tool to retrieve similar questions from a vector store.",
|
44 |
+
)
|
45 |
+
'''
|
46 |
+
|
47 |
+
def build_graph(provider: str = "groq"):
|
48 |
+
"""Build the graph"""
|
49 |
+
if provider == "groq":
|
50 |
+
llm = ChatGroq(model="qwen/qwen3-32b", temperature=0)
|
51 |
+
elif provider == "huggingface":
|
52 |
+
llm = ChatHuggingFace(
|
53 |
+
llm=HuggingFaceEndpoint(
|
54 |
+
repo_id="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
55 |
+
task="text-generation",
|
56 |
+
max_new_tokens=1024,
|
57 |
+
temperature=0,
|
58 |
+
),
|
59 |
+
verbose=True,
|
60 |
+
)
|
61 |
+
else:
|
62 |
+
raise ValueError("Invalid provider. Choose 'groq' or 'huggingface'.")
|
63 |
+
llm_with_tools = llm.bind_tools(tools)
|
64 |
+
|
65 |
+
# Node
|
66 |
+
def assistant(state: MessagesState):
|
67 |
+
"""Assistant node"""
|
68 |
+
return {"messages": [llm_with_tools.invoke(state["messages"])]}
|
69 |
+
|
70 |
+
def retriever(state: MessagesState):
|
71 |
+
"""Retriever node"""
|
72 |
+
similar_question = vector_store.similarity_search(state["messages"][0].content)
|
73 |
+
|
74 |
+
if similar_question:
|
75 |
+
example_msg = HumanMessage(
|
76 |
+
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
|
77 |
+
)
|
78 |
+
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
|
79 |
+
# no similar questions are found
|
80 |
+
return {"messages": [sys_msg] + state["messages"]}
|
81 |
+
|
82 |
+
builder = StateGraph(MessagesState)
|
83 |
+
builder.add_node("retriever", retriever)
|
84 |
+
builder.add_node("assistant", assistant)
|
85 |
+
builder.add_node("tools", ToolNode(tools))
|
86 |
+
builder.add_edge(START, "retriever")
|
87 |
+
builder.add_edge("retriever", "assistant")
|
88 |
+
builder.add_conditional_edges(
|
89 |
+
"assistant",
|
90 |
+
tools_condition,
|
91 |
+
)
|
92 |
+
builder.add_edge("tools", "assistant")
|
93 |
+
|
94 |
+
return builder.compile()
|
95 |
+
|
96 |
+
|
97 |
+
if __name__ == "__main__":
|
98 |
+
question = "If Ada Lovelace was born in 1815 and Charles Babbage died in 1871, how old was she when he died?"
|
99 |
+
graph = build_graph(provider="groq")
|
100 |
+
messages = [HumanMessage(content=question)]
|
101 |
+
messages = graph.invoke({"messages": messages})
|
102 |
+
for m in messages["messages"]:
|
103 |
+
m.pretty_print()
|
app.py
CHANGED
@@ -1,15 +1,12 @@
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
3 |
-
import requests
|
4 |
-
import inspect
|
5 |
import pandas as pd
|
|
|
6 |
|
7 |
-
# (Keep Constants as is)
|
8 |
-
# --- Constants ---
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
|
11 |
-
# ---
|
12 |
-
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
13 |
class BasicAgent:
|
14 |
def __init__(self):
|
15 |
print("BasicAgent initialized.")
|
@@ -91,7 +88,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
91 |
print("Agent did not produce any answers to submit.")
|
92 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
93 |
|
94 |
-
# 4. Prepare Submission
|
95 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
96 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
97 |
print(status_update)
|
@@ -140,7 +137,6 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
140 |
return status_message, results_df
|
141 |
|
142 |
|
143 |
-
# --- Build Gradio Interface using Blocks ---
|
144 |
with gr.Blocks() as demo:
|
145 |
gr.Markdown("# Basic Agent Evaluation Runner")
|
146 |
gr.Markdown(
|
@@ -163,7 +159,6 @@ with gr.Blocks() as demo:
|
|
163 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
164 |
|
165 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
166 |
-
# Removed max_rows=10 from DataFrame constructor
|
167 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
168 |
|
169 |
run_button.click(
|
@@ -193,4 +188,4 @@ if __name__ == "__main__":
|
|
193 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
194 |
|
195 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
196 |
-
demo.launch(debug=True, share=False)
|
|
|
1 |
import os
|
2 |
+
|
3 |
import gradio as gr
|
|
|
|
|
4 |
import pandas as pd
|
5 |
+
import requests
|
6 |
|
|
|
|
|
7 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
8 |
|
9 |
+
# --- Agent Definition ---
|
|
|
10 |
class BasicAgent:
|
11 |
def __init__(self):
|
12 |
print("BasicAgent initialized.")
|
|
|
88 |
print("Agent did not produce any answers to submit.")
|
89 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
90 |
|
91 |
+
# 4. Prepare Submission
|
92 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
93 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
94 |
print(status_update)
|
|
|
137 |
return status_message, results_df
|
138 |
|
139 |
|
|
|
140 |
with gr.Blocks() as demo:
|
141 |
gr.Markdown("# Basic Agent Evaluation Runner")
|
142 |
gr.Markdown(
|
|
|
159 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
160 |
|
161 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
|
|
162 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
163 |
|
164 |
run_button.click(
|
|
|
188 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
189 |
|
190 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
191 |
+
demo.launch(debug=True, share=False)
|
pyproject.toml
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[project]
|
2 |
+
name = "infersense"
|
3 |
+
version = "0.1.0"
|
4 |
+
authors = [{ name = "Semih Berkay Ozturk" }]
|
5 |
+
dependencies = [
|
6 |
+
"gradio>=5.38.1",
|
7 |
+
"langchain-community>=0.3.27",
|
8 |
+
"langchain-groq>=0.3.6",
|
9 |
+
"langchain-huggingface>=0.3.1",
|
10 |
+
"langgraph>=0.5.4",
|
11 |
+
"polars>=1.31.0",
|
12 |
+
"pytesseract>=0.3.13",
|
13 |
+
]
|
14 |
+
|
15 |
+
[tool.ruff.lint]
|
16 |
+
extend-select = [
|
17 |
+
"F", # Pyflakes rules
|
18 |
+
"W", # PyCodeStyle warnings
|
19 |
+
"E", # PyCodeStyle errors
|
20 |
+
"I", # Sort imports properly
|
21 |
+
"UP", # Warn if certain things can changed due to newer Python versions
|
22 |
+
"C4", # Catch incorrect use of comprehensions, dict, list, etc
|
23 |
+
"FA", # Enforce from __future__ import annotations
|
24 |
+
"ISC", # Good use of string concatenation
|
25 |
+
"ICN", # Use common import conventions
|
26 |
+
"RET", # Good return practices
|
27 |
+
"SIM", # Common simplification rules
|
28 |
+
"TID", # Some good import practices
|
29 |
+
"TC", # Enforce importing certain types in a TYPE_CHECKING block
|
30 |
+
]
|
requirements.txt
DELETED
@@ -1,2 +0,0 @@
|
|
1 |
-
gradio
|
2 |
-
requests
|
|
|
|
|
|
system_prompt.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
You are an helpful assistant tasked with answering questions precisely and concisely by reasoning and, when needed, using available tools to find information.
|
2 |
+
When given a question, think carefully, decide if a tool call is necessary, and use tools to gather information before answering.
|
3 |
+
Once you have enough information, respond with only the final answer in this format:
|
4 |
+
FINAL ANSWER: [YOUR FINAL ANSWER]
|
5 |
+
Your FINAL ANSWER should be a number OR a few words OR a comma-separated list of numbers and/or words.
|
6 |
+
If a number is requested, do not include commas, currency symbols, or units unless explicitly asked.
|
7 |
+
If a string is requested, avoid articles and abbreviations, and write digits as plain text unless specified otherwise.
|
8 |
+
For lists, apply these rules to each element accordingly.
|
9 |
+
Only output the line starting with "FINAL ANSWER:" followed immediately by your answer, nothing else.
|
tools.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import polars as pl
|
2 |
+
import pytesseract
|
3 |
+
from langchain_community.document_loaders import ArxivLoader, WikipediaLoader
|
4 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
5 |
+
from langchain_core.tools import tool
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
# --------- Basic Math tools ---------
|
9 |
+
|
10 |
+
@tool
|
11 |
+
def add(a: float, b: float) -> float:
|
12 |
+
"""
|
13 |
+
Add two numbers.
|
14 |
+
Args:
|
15 |
+
a (float): the first number
|
16 |
+
b (float): the second number
|
17 |
+
"""
|
18 |
+
return a + b
|
19 |
+
|
20 |
+
@tool
|
21 |
+
def subtract(a: float, b: float) -> int:
|
22 |
+
"""
|
23 |
+
Subtract two numbers.
|
24 |
+
Args:
|
25 |
+
a (float): the first number
|
26 |
+
b (float): the second number
|
27 |
+
"""
|
28 |
+
return a - b
|
29 |
+
|
30 |
+
@tool
|
31 |
+
def multiply(a: float, b: float) -> float:
|
32 |
+
"""
|
33 |
+
Multiplies two numbers.
|
34 |
+
Args:
|
35 |
+
a (float): the first number
|
36 |
+
b (float): the second number
|
37 |
+
"""
|
38 |
+
return a * b
|
39 |
+
|
40 |
+
@tool
|
41 |
+
def divide(a: float, b: float) -> float:
|
42 |
+
"""
|
43 |
+
Divides two numbers.
|
44 |
+
Args:
|
45 |
+
a (float): the first float number
|
46 |
+
b (float): the second float number
|
47 |
+
"""
|
48 |
+
if b == 0:
|
49 |
+
raise ValueError("Cannot divided by zero.")
|
50 |
+
return a / b
|
51 |
+
|
52 |
+
|
53 |
+
@tool
|
54 |
+
def modulus(a: int, b: int) -> int:
|
55 |
+
"""
|
56 |
+
Get the modulus of two numbers.
|
57 |
+
Args:
|
58 |
+
a (int): the first number
|
59 |
+
b (int): the second number
|
60 |
+
"""
|
61 |
+
return a % b
|
62 |
+
|
63 |
+
|
64 |
+
@tool
|
65 |
+
def power(a: float, b: float) -> float:
|
66 |
+
"""
|
67 |
+
Get the power of two numbers.
|
68 |
+
Args:
|
69 |
+
a (float): the first number
|
70 |
+
b (float): the second number
|
71 |
+
"""
|
72 |
+
return a**b
|
73 |
+
|
74 |
+
# ------- Search Tools -------
|
75 |
+
|
76 |
+
@tool
|
77 |
+
def arxiv_search(query: str) -> str:
|
78 |
+
"""Search Arxiv for a query and return maximum 3 result.
|
79 |
+
Args:
|
80 |
+
query: The search query."""
|
81 |
+
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
82 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
83 |
+
[
|
84 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
85 |
+
for doc in search_docs
|
86 |
+
]
|
87 |
+
)
|
88 |
+
return {"arxiv_results": formatted_search_docs}
|
89 |
+
|
90 |
+
@tool
|
91 |
+
def web_search(query: str) -> str:
|
92 |
+
"""Search the Web via Tavily for a query and return 3 results in maximum.
|
93 |
+
Args:
|
94 |
+
query: The search query."""
|
95 |
+
search_docs = TavilySearchResults(max_results=3).invoke(query)
|
96 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
97 |
+
[
|
98 |
+
f'<Document source="{doc.metadata.get("url", "")}" title="{doc.get("title", "")}"/>\n{doc.get("content", "")}\n</Document>'
|
99 |
+
for doc in search_docs
|
100 |
+
]
|
101 |
+
)
|
102 |
+
return {"web_results": formatted_search_docs}
|
103 |
+
|
104 |
+
@tool
|
105 |
+
def wikipedia_search(query: str) -> str:
|
106 |
+
"""Search Wikipedia for a query and return maximum 3 results.
|
107 |
+
Args:
|
108 |
+
query: The search query."""
|
109 |
+
search_docs = WikipediaLoader(query=query, load_max_docs=3).load()
|
110 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
111 |
+
[
|
112 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
113 |
+
for doc in search_docs
|
114 |
+
])
|
115 |
+
return {"wiki_results": formatted_search_docs}
|
116 |
+
|
117 |
+
# ------ Document Processing Tools ------
|
118 |
+
|
119 |
+
@tool
|
120 |
+
def extract_text_from_image(image_path: str) -> str:
|
121 |
+
"""
|
122 |
+
Extract text from an image by using pytesseract via OCR.
|
123 |
+
Args:
|
124 |
+
image_path (str): the path to the image file.
|
125 |
+
"""
|
126 |
+
try:
|
127 |
+
image = Image.open(image_path)
|
128 |
+
text = pytesseract.image_to_string(image)
|
129 |
+
|
130 |
+
return f"Extracted the text from image:\n\n{text}"
|
131 |
+
except Exception as e:
|
132 |
+
return f"Error extracting text from image: {str(e)}"
|
133 |
+
|
134 |
+
|
135 |
+
@tool
|
136 |
+
def analyze_csv_file(file_path: str, query: str) -> str:
|
137 |
+
"""
|
138 |
+
Analyze a CSV file by using Polars and answer a question about it.
|
139 |
+
Args:
|
140 |
+
file_path (str): the path to the CSV file.
|
141 |
+
query (str): Question about the data
|
142 |
+
"""
|
143 |
+
try:
|
144 |
+
df = pl.read_csv(file_path)
|
145 |
+
|
146 |
+
result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
|
147 |
+
result += f"Columns: {', '.join(df.columns)}\n\n"
|
148 |
+
|
149 |
+
result += "Summary statistics:\n"
|
150 |
+
result += str(df.describe())
|
151 |
+
|
152 |
+
return result
|
153 |
+
|
154 |
+
except Exception as e:
|
155 |
+
return f"Error occured analyzing CSV file: {str(e)}"
|
156 |
+
|
157 |
+
|
158 |
+
@tool
|
159 |
+
def analyze_excel_file(file_path: str, query: str) -> str:
|
160 |
+
"""
|
161 |
+
Analyze an Excel file using Polars and answer a question about it.
|
162 |
+
Args:
|
163 |
+
file_path (str): the path to the Excel file.
|
164 |
+
query (str): Question about the data
|
165 |
+
"""
|
166 |
+
try:
|
167 |
+
df = pl.read_excel(file_path)
|
168 |
+
|
169 |
+
result = (
|
170 |
+
f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
|
171 |
+
)
|
172 |
+
result += f"Columns: {', '.join(df.columns)}\n\n"
|
173 |
+
|
174 |
+
result += "Summary statistics:\n"
|
175 |
+
result += str(df.describe())
|
176 |
+
|
177 |
+
return result
|
178 |
+
|
179 |
+
except Exception as e:
|
180 |
+
return f"Error occured analyzing Excel file: {str(e)}"
|
181 |
+
|
182 |
+
|
183 |
+
tools = [
|
184 |
+
multiply,
|
185 |
+
add,
|
186 |
+
subtract,
|
187 |
+
divide,
|
188 |
+
modulus,
|
189 |
+
power,
|
190 |
+
web_search,
|
191 |
+
wikipedia_search,
|
192 |
+
arxiv_search,
|
193 |
+
extract_text_from_image,
|
194 |
+
analyze_csv_file,
|
195 |
+
analyze_excel_file,
|
196 |
+
]
|
uv.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|