Spaces:
Runtime error
app.py
Browse filesimport gradio as gr
import json
# Charger les données de l'IA (on va stocker les infos ici)
def charger_donnees():
with open("semxflow_data.json", "r", encoding="utf-8") as file:
return json.load(file)
# Répondre aux utilisateurs
def chatbot_response(message):
data = charger_donnees()
reponses = data.get("reponses", {})
# Vérifier si une réponse existe pour ce message
return reponses.get(message.lower(), "Désolé, je ne comprends pas encore cette question.")
# Interface Gradio
iface = gr.Interface(
fn=chatbot_response,
inputs="text",
outputs="text",
title="Chatbot SemXFlow",
description="Pose-moi des questions sur SemXFlow et je te répondrai !"
)
# Lancer l'application
if __name__ == "__main__":
iface.launch()
@@ -1,64 +1,28 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
"""
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
def
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
import json
|
3 |
+
|
4 |
+
# Charger les données de l'IA (on va stocker les infos ici)
|
5 |
+
def charger_donnees():
|
6 |
+
with open("semxflow_data.json", "r", encoding="utf-8") as file:
|
7 |
+
return json.load(file)
|
8 |
+
|
9 |
+
# Répondre aux utilisateurs
|
10 |
+
def chatbot_response(message):
|
11 |
+
data = charger_donnees()
|
12 |
+
reponses = data.get("reponses", {})
|
13 |
+
|
14 |
+
# Vérifier si une réponse existe pour ce message
|
15 |
+
return reponses.get(message.lower(), "Désolé, je ne comprends pas encore cette question.")
|
16 |
+
|
17 |
+
# Interface Gradio
|
18 |
+
iface = gr.Interface(
|
19 |
+
fn=chatbot_response,
|
20 |
+
inputs="text",
|
21 |
+
outputs="text",
|
22 |
+
title="Chatbot SemXFlow",
|
23 |
+
description="Pose-moi des questions sur SemXFlow et je te répondrai !"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
)
|
25 |
|
26 |
+
# Lancer l'application
|
27 |
if __name__ == "__main__":
|
28 |
+
iface.launch()
|