Spaces:
Sleeping
Sleeping
File size: 3,305 Bytes
c84055e 504d366 58a60b8 c2d58b3 c84055e 504d366 c84055e 504d366 58a60b8 504d366 58a60b8 c84055e 504d366 c84055e 504d366 cadf158 58a60b8 ac89508 504d366 c84055e 504d366 c84055e 504d366 c84055e 504d366 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
from pydantic import BaseSettings, Field
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class Settings(BaseSettings):
# Default values for the processor and model
processor: str = Field(default="senga-ml/donut-v16")
model: str = Field(default="senga-ml/donut-v16")
dataset: str = Field(default="senga-ml/dnotes-data-v6")
base_config: str = Field(default="naver-clova-ix/donut-base")
base_processor: str = Field(default="naver-clova-ix/donut-base")
base_model: str = Field(default="naver-clova-ix/donut-base")
inference_stats_file: str = Field(default="data/donut_inference_stats.json")
training_stats_file: str = Field(default="data/donut_training_stats.json")
evaluate_stats_file: str = Field(default="data/donut_evaluate_stats.json")
# The shipper_id to dynamically select model and processor
shipper_id: str = Field(default="default_shipper")
class Config:
# This enables the automatic reloading of values when they change
validate_assignment = True
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.set_model()
# Function to dynamically select model and processor based on shipper_id
def set_model(self):
# IMPORTANT: Make sure model names are consistent!
# You had "donut-16" in some places and "donut-v16" in others
shipper_model_map = {
# Group 1 models - using donut-v16
"61": {"model": "senga-ml/donut-v16", "processor": "senga-ml/donut-v16"},
"81": {"model": "senga-ml/donut-v16", "processor": "senga-ml/donut-v16"},
"139": {"model": "senga-ml/donut-v16", "processor": "senga-ml/donut-v16"},
# Group 2 models - using donut-v17
"165": {"model": "senga-ml/donut-v17", "processor": "senga-ml/donut-v17"},
"127": {"model": "senga-ml/donut-v17", "processor": "senga-ml/donut-v17"},
"145": {"model": "senga-ml/donut-v17", "processor": "senga-ml/donut-v17"},
}
previous_model = self.model
previous_processor = self.processor
config = shipper_model_map.get(
self.shipper_id,
{"model": self.base_model, "processor": self.base_processor}
)
self.model = config["model"]
self.processor = config["processor"]
# Log changes for debugging
logger.info(f"Shipper ID set to: {self.shipper_id}")
logger.info(f"Changed model from {previous_model} to {self.model}")
logger.info(f"Changed processor from {previous_processor} to {self.processor}")
return self.model, self.processor
# Create a singleton instance
settings = Settings()
logger.info(f"Initial model setup: {settings.model}")
# Function to update shipper and trigger model change
def update_shipper(new_shipper_id):
"""
Update the shipper ID and change the model accordingly
Args:
new_shipper_id: The new shipper ID to use
Returns:
tuple: (model, processor) that were selected
"""
logger.info(f"Updating shipper ID to {new_shipper_id}")
settings.shipper_id = new_shipper_id
return settings.set_model() |