File size: 1,979 Bytes
c2d58b3
 
 
cadf158
 
 
6b214e4
 
 
 
 
 
 
cadf158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e26f64e
c2d58b3
f632edb
cadf158
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from pydantic import BaseSettings

class Settings(BaseSettings):
    # Default values for the processor and model
    processor: str = "senga-ml/naivas_lpos"
    model: str = "senga-ml/naivas_lpos"
    dataset: str = "senga-ml/dnotes-data-v6"
    base_config: str = "naver-clova-ix/donut-base"
    base_processor: str = "naver-clova-ix/donut-base"
    base_model: str = "naver-clova-ix/donut-base"
    inference_stats_file: str = "data/donut_inference_stats.json"
    training_stats_file: str = "data/donut_training_stats.json"
    evaluate_stats_file: str = "data/donut_evaluate_stats.json"
    
    # The shipper_id to dynamically select model and processor
    shipper_id: str = "default_shipper"

    # Function to dynamically select model and processor based on shipper_id
    def set_model(self):
        if self.shipper_id == "61":
            self.model = "senga-ml/donut-16"
            self.processor = "senga-ml/donut-16"
        elif self.shipper_id == "81":
            self.model = "senga-ml/donut-16"
            self.processor = "senga-ml/donut-16"
        elif self.shipper_id == "139":
            self.model = "senga-ml/donut-16"
            self.processor = "senga-ml/donut-16"
        elif self.shipper_id == "165"   
            self.model = "senga-ml/donut-17"
            self.processor = "senga-ml/donut-17"
        elif self.shipper_id == "127"
            self.model = "senga-ml/donut-17"
            self.processor = "senga-ml/donut-17"
        elif self.shipper_id == "145"
            self.model = "senga-ml/donut-17"
            self.processor = "senga-ml/donut-17"
        else:
            self.model = self.base_model  # Default to base model
            self.processor = self.base_processor  # Default to base processor

    # Initialize dynamic model selection when settings are loaded
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.set_model()  # Set the model based on shipper_id


settings = Settings()