Spaces:
Sleeping
Sleeping
Update routers/donut_inference.py
Browse files- routers/donut_inference.py +74 -37
routers/donut_inference.py
CHANGED
@@ -2,55 +2,93 @@ import re
|
|
2 |
import time
|
3 |
import torch
|
4 |
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
5 |
-
from config import settings
|
6 |
from functools import lru_cache
|
7 |
import os
|
|
|
8 |
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
temp_settings = Settings(shipper_id=shipper_id)
|
13 |
-
processor = DonutProcessor.from_pretrained(temp_settings.processor)
|
14 |
-
model = VisionEncoderDecoderModel.from_pretrained(temp_settings.model)
|
15 |
-
|
16 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
-
model.to(device)
|
18 |
-
|
19 |
-
return processor, model, device
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
def process_document_donut(image, shipper_id="default_shipper"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
worker_pid = os.getpid()
|
24 |
-
|
25 |
-
|
26 |
start_time = time.time()
|
27 |
-
|
|
|
28 |
processor, model, device = load_model(shipper_id)
|
29 |
-
|
30 |
# prepare encoder inputs
|
31 |
pixel_values = processor(image, return_tensors="pt").pixel_values
|
32 |
-
|
33 |
# prepare decoder inputs
|
34 |
task_prompt = "<s_cord-v2>"
|
35 |
decoder_input_ids = processor.tokenizer(
|
36 |
-
task_prompt,
|
37 |
-
add_special_tokens=False,
|
38 |
return_tensors="pt"
|
39 |
).input_ids
|
40 |
-
|
41 |
-
outputs = model.generate(
|
42 |
-
pixel_values.to(device),
|
43 |
-
decoder_input_ids=decoder_input_ids.to(device),
|
44 |
-
max_length=model.decoder.config.max_position_embeddings,
|
45 |
-
early_stopping=True,
|
46 |
-
pad_token_id=processor.tokenizer.pad_token_id,
|
47 |
-
eos_token_id=processor.tokenizer.eos_token_id,
|
48 |
-
use_cache=True,
|
49 |
-
num_beams=1,
|
50 |
-
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
51 |
-
return_dict_in_generate=True,
|
52 |
-
)
|
53 |
-
|
54 |
# generate answer
|
55 |
outputs = model.generate(
|
56 |
pixel_values.to(device),
|
@@ -64,15 +102,14 @@ def process_document_donut(image, shipper_id="default_shipper"):
|
|
64 |
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
65 |
return_dict_in_generate=True,
|
66 |
)
|
67 |
-
|
68 |
# postprocess
|
69 |
sequence = processor.batch_decode(outputs.sequences)[0]
|
70 |
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
71 |
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
72 |
-
|
73 |
end_time = time.time()
|
74 |
processing_time = end_time - start_time
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
return processor.token2json(sequence), processing_time
|
|
|
2 |
import time
|
3 |
import torch
|
4 |
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
5 |
+
from config import settings, update_shipper
|
6 |
from functools import lru_cache
|
7 |
import os
|
8 |
+
import logging
|
9 |
|
10 |
+
# Set up logging
|
11 |
+
logging.basicConfig(level=logging.INFO)
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
|
14 |
+
# Model cache dictionary - maps shipper_id to loaded models
|
15 |
+
model_cache = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
def load_model(shipper_id: str):
|
18 |
+
"""
|
19 |
+
Load a model for a specific shipper_id, with caching
|
20 |
+
|
21 |
+
Args:
|
22 |
+
shipper_id: The shipper ID to load the model for
|
23 |
+
|
24 |
+
Returns:
|
25 |
+
tuple: (processor, model, device) for the specified shipper
|
26 |
+
"""
|
27 |
+
# Check if this model is already loaded in cache
|
28 |
+
if shipper_id in model_cache:
|
29 |
+
logger.info(f"Using cached model for shipper {shipper_id}")
|
30 |
+
return model_cache[shipper_id]
|
31 |
+
|
32 |
+
# Update settings to use the appropriate model for this shipper
|
33 |
+
model_name, processor_name = update_shipper(shipper_id)
|
34 |
+
|
35 |
+
logger.info(f"Loading model for shipper {shipper_id}: model={model_name}, processor={processor_name}")
|
36 |
+
|
37 |
+
try:
|
38 |
+
# Load the model from HuggingFace
|
39 |
+
processor = DonutProcessor.from_pretrained(processor_name)
|
40 |
+
model = VisionEncoderDecoderModel.from_pretrained(model_name)
|
41 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
42 |
+
model.to(device)
|
43 |
+
|
44 |
+
# Cache the loaded model
|
45 |
+
model_cache[shipper_id] = (processor, model, device)
|
46 |
+
|
47 |
+
return processor, model, device
|
48 |
+
except Exception as e:
|
49 |
+
logger.error(f"Error loading model for shipper {shipper_id}: {str(e)}")
|
50 |
+
# Fall back to default model
|
51 |
+
if 'default_shipper' in model_cache:
|
52 |
+
logger.info("Falling back to default model")
|
53 |
+
return model_cache['default_shipper']
|
54 |
+
else:
|
55 |
+
logger.info("Loading default model")
|
56 |
+
processor = DonutProcessor.from_pretrained(settings.base_processor)
|
57 |
+
model = VisionEncoderDecoderModel.from_pretrained(settings.base_model)
|
58 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
59 |
+
model.to(device)
|
60 |
+
model_cache['default_shipper'] = (processor, model, device)
|
61 |
+
return model_cache['default_shipper']
|
62 |
|
63 |
def process_document_donut(image, shipper_id="default_shipper"):
|
64 |
+
"""
|
65 |
+
Process a document using the appropriate model for the shipper
|
66 |
+
|
67 |
+
Args:
|
68 |
+
image: The document image to process
|
69 |
+
shipper_id: Shipper ID to select a specific model
|
70 |
+
|
71 |
+
Returns:
|
72 |
+
tuple: (results, processing_time)
|
73 |
+
"""
|
74 |
worker_pid = os.getpid()
|
75 |
+
logger.info(f"Handling inference request with worker PID: {worker_pid}, shipper_id: {shipper_id}")
|
|
|
76 |
start_time = time.time()
|
77 |
+
|
78 |
+
# Load the model based on shipper_id
|
79 |
processor, model, device = load_model(shipper_id)
|
80 |
+
|
81 |
# prepare encoder inputs
|
82 |
pixel_values = processor(image, return_tensors="pt").pixel_values
|
83 |
+
|
84 |
# prepare decoder inputs
|
85 |
task_prompt = "<s_cord-v2>"
|
86 |
decoder_input_ids = processor.tokenizer(
|
87 |
+
task_prompt,
|
88 |
+
add_special_tokens=False,
|
89 |
return_tensors="pt"
|
90 |
).input_ids
|
91 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
# generate answer
|
93 |
outputs = model.generate(
|
94 |
pixel_values.to(device),
|
|
|
102 |
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
103 |
return_dict_in_generate=True,
|
104 |
)
|
105 |
+
|
106 |
# postprocess
|
107 |
sequence = processor.batch_decode(outputs.sequences)[0]
|
108 |
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
109 |
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
110 |
+
|
111 |
end_time = time.time()
|
112 |
processing_time = end_time - start_time
|
113 |
+
logger.info(f"Inference done in {processing_time:.2f}s, worker PID: {worker_pid}")
|
114 |
+
|
|
|
115 |
return processor.token2json(sequence), processing_time
|