Spaces:
Sleeping
Sleeping
Update endpoints.py
Browse files- endpoints.py +71 -20
endpoints.py
CHANGED
@@ -1,26 +1,77 @@
|
|
1 |
-
from fastapi import FastAPI
|
2 |
-
from
|
3 |
-
from
|
4 |
-
|
5 |
-
from
|
|
|
6 |
import os
|
7 |
-
|
8 |
-
|
|
|
9 |
|
10 |
-
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
|
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, APIRouter, File, UploadFile, Form
|
2 |
+
from typing import Optional
|
3 |
+
from PIL import Image
|
4 |
+
import urllib.request
|
5 |
+
from io import BytesIO
|
6 |
+
import json
|
7 |
import os
|
8 |
+
from config import settings
|
9 |
+
import utils
|
10 |
+
from routers.donut_inference import process_document_donut
|
11 |
|
12 |
+
router = APIRouter()
|
13 |
|
14 |
+
def count_values(obj):
|
15 |
+
if isinstance(obj, dict):
|
16 |
+
count = 0
|
17 |
+
for value in obj.values():
|
18 |
+
count += count_values(value)
|
19 |
+
return count
|
20 |
+
elif isinstance(obj, list):
|
21 |
+
count = 0
|
22 |
+
for item in obj:
|
23 |
+
count += count_values(item)
|
24 |
+
return count
|
25 |
+
else:
|
26 |
+
return 1
|
27 |
|
28 |
+
@router.post("/inference")
|
29 |
+
async def run_inference(file: Optional[UploadFile] = File(None), image_url: Optional[str] = Form(None),
|
30 |
+
shipper_id: int = Form(...), model_in_use: str = Form('donut')):
|
31 |
|
32 |
+
result = []
|
33 |
+
model_url = settings.get_model_url(shipper_id) # Get the correct model URL based on shipper_id
|
34 |
+
|
35 |
+
if file:
|
36 |
+
# Ensure the uploaded file is a JPG image
|
37 |
+
if file.content_type not in ["image/jpeg", "image/jpg"]:
|
38 |
+
return {"error": "Invalid file type. Only JPG images are allowed."}
|
39 |
|
40 |
+
image = Image.open(BytesIO(await file.read()))
|
41 |
+
processing_time = 0
|
42 |
+
if model_in_use == 'donut':
|
43 |
+
result, processing_time = process_document_donut(image, model_url) # Pass model_url to the function
|
44 |
+
utils.log_stats(settings.inference_stats_file, [processing_time, count_values(result), file.filename, settings.model])
|
45 |
+
print(f"Processing time: {processing_time:.2f} seconds")
|
46 |
+
elif image_url:
|
47 |
+
# test image url: https://raw.githubusercontent.com/katanaml/sparrow/main/sparrow-data/docs/input/invoices/processed/images/invoice_10.jpg
|
48 |
+
with urllib.request.urlopen(image_url) as url:
|
49 |
+
image = Image.open(BytesIO(url.read()))
|
50 |
+
|
51 |
+
processing_time = 0
|
52 |
+
if model_in_use == 'donut':
|
53 |
+
result, processing_time = process_document_donut(image, model_url) # Pass model_url to the function
|
54 |
+
# parse file name from url
|
55 |
+
file_name = image_url.split("/")[-1]
|
56 |
+
utils.log_stats(settings.inference_stats_file, [processing_time, count_values(result), file_name, settings.model])
|
57 |
+
print(f"Processing time inference: {processing_time:.2f} seconds")
|
58 |
+
else:
|
59 |
+
result = {"info": "No input provided"}
|
60 |
+
|
61 |
+
return result
|
62 |
+
|
63 |
+
@router.get("/statistics")
|
64 |
+
async def get_statistics():
|
65 |
+
file_path = settings.inference_stats_file
|
66 |
+
|
67 |
+
# Check if the file exists, and read its content
|
68 |
+
if os.path.exists(file_path):
|
69 |
+
with open(file_path, 'r') as file:
|
70 |
+
try:
|
71 |
+
content = json.load(file)
|
72 |
+
except json.JSONDecodeError:
|
73 |
+
content = []
|
74 |
+
else:
|
75 |
+
content = []
|
76 |
+
|
77 |
+
return content
|